Math, asked by Anonymous, 1 month ago

7. Two parallel sides of a trapezium are 60 cm and 77 cm and other sides are 25 cm and 26 cm. Find the area of trapezium.

Answers

Answered by IxIxitzAshxIxI
3

Answer

1644cm2

Explanation

area ABEC

s=225+26+17=34

area ΔBEC=34×9×8×17

=17×3×2×2=204cm2

area ΔBEC=21×17×h=204

h=17204×2=24

area trap. ABCD =21(60+77)×24=137×12=1644cm2

Answered by IIMrVelvetII
83

QUESTION :- Two parallel sides of a trapezium are 60 cm and 77 cm and other sides are 25 cm and 26 cm. Find the area of trapezium.

ANSWER :-

Draw a line BC parallel to AD.

Draw a perpendicular line BE on DF.

ABCD is a parallelogram.

 \sf BC = AD = 25 \: cm

 \sf CD = AB = 60 \: cm

\sf CF = 77 - CD = 17 \: cm

We know that,

 \sf  \fbox{s =  \frac{Perimeter}{2}}

Here, s = half perimeter

For BCF

Semi - Perimeter =

 \sf \frac{(25 + 26 + 17)}{2}

 \sf   = \frac{68}{2}

 \sf  = 34

By using Heron's formula,

 \sf \fbox{\sqrt{s(s - a)(s - b)(s - c)}}

 \sf   = \sqrt{34(34 - 25)(34 - 26)(34 - 17)}

 =  \sqrt{34 \times 9 \times 8 \times 17}

 \sf  = 17 \times 3 \times 2 \times 2

  \sf = {204 \: cm}^{2}

Area of Trapezium ABFD

 \sf  =  \frac{1}{2} (AB+DF)×BE

\sf = \frac{1}{2} (60 + 77) \times 24

 \sf   = \frac{1}{2}  \times 137 \times 24

 \sf = 134 \times 12

 \sf \fbox{ =  {1644 \: cm}^{2} }

∴ The area of trapezium is 1644 cm².

[NOTE :- Refer the attachment for figure⤴️]

 \fbox \orange{ \sf @IIMrVelvetII}

\fbox \green{ \sf Thank You!!!}

Attachments:

MystícPhoeníx: Splendid !! Keep it Up ;)
Similar questions