Math, asked by umeshkamble6375, 10 months ago

8. A player sitting on the top of a tower of height 20 m observe the angle of depression
of a ball lying on the ground as 60°. Find the distance between the foot of the tower
and ball
DINESH Let Media​

Answers

Answered by kasturisaigoud
18

Answer:

this may be help yourself

Attachments:
Answered by BrainlyConqueror0901
28

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:between\:ball\:and\:foot\:of\:tower=20\sqrt{3}\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Height \: of \: tower = 20 \: m \\  \\  \tt:  \implies Angle \: of \: elevation\:of\:ball = 30 \degree \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Distance \: between \: ball \: and \:foot \: of \: tower = ?

• According to given question :

 \tt \circ \:  \angle \: B = 60 \degree \\  \\  \tt \circ \: AC =20 \: m  \\  \\  \bold{In  \:right \: angled \:  \triangle \: ABC} \\  \tt:  \implies tan \: \theta =  \frac{perpendicular}{base}  \\  \\ \tt:  \implies tan \: 30 \degree = \frac{AC}{CB}  \\   \\  \tt \circ \: tan \: 30 \degree = \frac{1}{ \sqrt{3}} \\ \\  \tt:  \implies  \frac{1}{\sqrt{3}}  =  \frac{20}{CB}  \\  \\  \green{\tt:  \implies CB = 20\sqrt{3}\:m} \\  \\   \green{\tt \therefore Distance \: between \: ball \: and \: foot \: of \: tower \: is \:  20\sqrt{3}\: m}

Similar questions