8. Check whether g (x) is a factor of p (x) by applying the division algorithm.
(1) p(x) = 2x^5 - 4x^3 + 2x^2 + 5x + 1 ;
g(x) = x^3 - 4x + 1
(2) p(x) = 4x^4 + 7x^2 + 15 ;
g(x) = x^2 - 15
Standard:- 10
Content Quality Solution Required
NO SPAMMING otherwise reported on the spot
Answers
Answered by
22
Given f(x) = 2x^5 - 4x^3 + 2x^2 + 5x + 1.
Given g(x) = x^3 - 4x + 1.
Now, we need to divide.
2x^2 + 4
--------------------------------------------------
x^3 - 4x + 1) 2x^5 - 4x^3 + 2x^2 + 5x + 1
2x^5 - 8x^3 + 2x^2
--------------------------------------------------------
4x^3 + 5x + 1
4x^3 - 16x + 4
-----------------------------------------------------
21x - 3
Since the remainder is not equal to 0. Therefore g(x) is not a factor of f(x).
(2)
Given p(x) = 4x^4 + 7x^2 + 15.
Given g(x) = x^2 - 15
Now, we need to divide.
4x^2 + 67
---------------------------------
x^2 - 15) 4x^4 + 7x^2 + 15
4x^4 - 60x^2
-----------------------------
67x^2 + 15
67x^2 - 1005
-------------------------------
1020.
The remainder is not equal to 0. Therefore, x^2 - 15 is a not a factor of p(x).
Hope this helps!
Given g(x) = x^3 - 4x + 1.
Now, we need to divide.
2x^2 + 4
--------------------------------------------------
x^3 - 4x + 1) 2x^5 - 4x^3 + 2x^2 + 5x + 1
2x^5 - 8x^3 + 2x^2
--------------------------------------------------------
4x^3 + 5x + 1
4x^3 - 16x + 4
-----------------------------------------------------
21x - 3
Since the remainder is not equal to 0. Therefore g(x) is not a factor of f(x).
(2)
Given p(x) = 4x^4 + 7x^2 + 15.
Given g(x) = x^2 - 15
Now, we need to divide.
4x^2 + 67
---------------------------------
x^2 - 15) 4x^4 + 7x^2 + 15
4x^4 - 60x^2
-----------------------------
67x^2 + 15
67x^2 - 1005
-------------------------------
1020.
The remainder is not equal to 0. Therefore, x^2 - 15 is a not a factor of p(x).
Hope this helps!
aadi93:
please help me i want u to answer my maths question please
Answered by
21
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions