Math, asked by melindadiongan43, 1 month ago

9.
2. If the 4th term is 8 and the common
difference is -4, what are the first 3 terms
of the arithmetic sequence?
A. -4,0,4,8
B. -4,-8,4,8
C. 20, 16, 12,8
D. 20, 16,- 12,8​

Answers

Answered by biradarkasturi12
0

Step-by-step explanation:

c. 16-20=-4

12-16=-4

8-12=-4

Answered by itzMeGunjan
4

Answer :-

Option (C) 20,16,12,8

Explanation and Solution :-

Given :-

  •   \mathtt{a_{4}} = 8
  •  \mathtt{common \: difference =  - 4}

\underline{\bold{Let\: the\: 1st \: term \: be\: a}}

 \:  \:   \:  \:  \:  \:  \:  \:   \boxed{  \bf\green{a_{n} = a + (n - 1)d}} \:  \:  \:

 \:  \:  \:  \:  \:  \sf{8 = a + (4 - 1) \times ( - 4) } \:  \:  \:  \:  \:  \: \\ \:  \:  \:  \:  \:  \sf{8 = a + 3 \times ( - 4) } \:  \:  \:  \:  \:  \: \\ \:  \:  \:  \:  \:  \sf{8 = a +  ( - 12) } \:  \:  \:  \:  \:  \: \\ \:  \:  \:  \:  \:  \sf{ a =8  +12  } \:  \:  \:  \:  \:  \: \\ \:  \:  \:  \:  \:    \rightarrow\boxed{\sf{ a =20  }} \:  \:  \:  \:  \:  \:

Find 1st, 2nd, 3rd and 4th term

  • a_{1} = a, a_{2} =a_{1} - cd, a_{3}=a_{2}-cd, a_{4} = a_{3} - cd , so on

then,

\bf{\bold{a_{1} =  \underline{20}} } \\   \bf{ \bold{a_{2} = 20-4 =  \underline{16}}} , \\  \bf{ \bold{a_{3} = 16-4 =  \underline{12}}} ,   \\ \bf{ \bold{a_{4} = 12-8 = \underline{8 }}}

Option (C) is the right answer .

__________________________________

Extra information:-

Q) What is Arithmetic progression (AP) ?

A) Let say a, b, c an AP then difference between a b and bc are equal.

i.e, \underbrace{a\leftrightarrow b}_{d} \: \underbrace{b\leftrightarrow c}_{d}

\boxed{a_{n} = a + (n-1) d}

Where

  • a = 1st term
  • d= Common difference (cd)
  • a_{n} = nth term
  • n = number of terms

#Gunjan

Similar questions