Math, asked by nekkantinija, 9 months ago

9x+5y=3, 3x-4y=2 solve by elimination method​

Answers

Answered by TrickYwriTer
1

Step-by-step explanation:

Given -

9x + 5y = 3

3x - 4y = 2

To Find -

Value of x and y

By Elimination method :-

Now,

[ 9x + 5y = 3 ] × 1

[ 3x - 4y = 2 ] × 3

(-) (+) (-)

_________________

» 5y + 12y = 3 - 6

» 17y = -3

  • » y = -3/17

Now,

Substituting the value of y on 9x + 5y = 3

» 9x + 5y = 3

» 9x + 5(-3/17) = 3

» 9x - 15/17 = 3

» 9x = 3 + 15/17

» 9x = 51 + 15/17

» 9x = 66/17

  • » x = 22/51

Hence,

The value of x is 22/51 and value of y is -3/17

Verification -

  • 9x + 5y = 3

» 9(22/51) + 5(-3/17) = 3

» 198/51 - 15/17 = 3

» 198 - 45/51 = 3

» 153/51 = 3

» 3 = 3

LHS = RHS

And

  • 3x - 4y = 2

» 3(22/51) - 4(-3/17) = 2

» 66/51 + 12/17 = 2

» 66 + 36/51 = 2

» 102/51 = 2

» 2 = 2

LHS = RHS

Hence,

Verified..

Answered by silentlover45
0

  \huge \mathfrak{Answer:-}

\implies x = 22/51

\implies y = -3/7

\large\underline\mathrm{Given:-}

  • 9x + 5y = 3
  • 3x - 4y = 2

\large\underline\mathrm{To \: find}

\large\underline\mathrm{Value \: of \: x \: and \: y.}

\large\underline\mathrm{Solution}

\implies 9x + 5y = 3____(1)

\implies 3x - 4y = 2____(2)

\large\underline\mathrm{Now,}

\large\underline\mathrm{multiple \: the \: Eq. \: (1) \: × \: 1 \: and \: Eq. \: \: (2) \: × \: 3, \: we \: get.}

\implies [9x + 5y = 3] × 1

\implies [3x - 4y = 2] × 3

9x + 5y = 3

9x - 12y = 6

_______________

\implies 7y = -3

\implies y = -3/7

\large\underline\mathrm{Now,}

\large\underline\mathrm{put \: the \: value \: of \: y \: on \: Eq. \: (1) \: .}

\implies 9x + 5y = 3

\implies 9x + 5(-3/17) = 3

\implies 9x - 15/17 = 3

\implies 9x = 3 + 15/17

\implies 9x = (51 + 15) / 17

\implies 9x = 66/17

\implies x = 22/51

\large\underline\mathrm{hence,}

\large\underline\mathrm{the \: value \: of \: x \: is \: 22/15 \; and \: y \: is \: -3/17}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions