Physics, asked by DebarghyaSen8572, 9 months ago

A 1muF capacitor and a 2µF capacitor are connected in series across a 1200 V supply line. a. Find the charge on each capacitor and the voltage across them. b. The charged capacitors are disconnected from the line and from each other and reconnected with terminals of like sign together. Find the final charge on each and the voltage across them.

Answers

Answered by roshinik1219
0

Given:

Capacitance (C_1) = 1 \mu F

                       C_2 = 2 \mu F

Voltage(V) = 1200 V

To find:

(a) The charge on each capacitor and the voltage across them.

(b) The final charge on each and the voltage across them when the charge capacitors are disconnected.

Solution:

(a) The charge on each capacitor and the voltage across

When capacitors are connected in series net capacitance is given by

                      C_(net) =    \frac{C_1C_2}{C_1+C_2}

                                  =\frac{2}{3} \mu F  

We know that,

                  q_(net) = C_(net) V

                             =(\frac{2}{3} \mu F)(1200V)

                           q_(net)=800\mu C

In series combination q remains same.

∴                            q_1=q_2=800 \mu C

                                  V_1 =      \frac{q_1}{C_1}  \\                =                \frac{800}{1} \\             =800V

and                           V_2 =      \frac{q_2}{C_2}  \\                =                \frac{800}{2} \\             =400V

Thus,                V_1= 800V

                         V_2= 400V          

b. Now, total charge will become 1600μC. This will now distribute in direct ratio of capacity.

               ∴          \frac{q_1}{q_2} = \frac{C_1}{C_2}  = \frac{1}{2}

                  q_1=                      \frac{1}{3} (1600)=   \frac{1600}{3}  \mu C

                     q_2=                      \frac{2}{3} (1600)=   \frac{3200}{3}  \mu C

They will have a common potential (in parallel) given by

               V=           \frac{Total charge}{Total capacity}

                     =\frac{1600 \mu C}{ 3 \mu F}

                  V  =\frac{1600}{3} V

Thus, Voltage across both capacitors is \frac{1600}{3}  V

Similar questions