a^2+1/a^2=14 a is not equal to 0 4a^3+4/a^3 +2a+2/a
Answers
Correct Question :-
If a² + 1/a² = 14, then find 4a³ + 4/a³ + 2a + 2/a.
Answer :-
4a³ + 4/a³ + 2a + 2/a = 216
Solution :-
4a³ + 4/a³ + 2a + 2/a
⇒ 4(a³ + 1/a³) + 2(a + 1/a)
First find the value of a + 1/a
a² + 1/a² = 14
Adding 2 on both sides
⇒ a² + 1/a² + 2 = 14 + 2
⇒ a² + 1/a² + 2 = 16
⇒ (a)² + (1/a)² + 2(x)(1/x) = 16
⇒ (a + 1/a)² = 16
[Since (a + b)² = a² + b² + 2ab]
⇒ a + 1/a = √16
⇒ a + 1/a = 4
Now find the value of a³ + 1/a³
Now cubing on both sides
(a + 1/a)³ = (4)³
⇒ (a + 1/a)³ = 64
⇒ (a)³ + (1/a)³ + 3(a)(1/a)(a + 1/a) = 64
[Since (a + b)³ = a³ + b³ + 3ab(a + b) ]
⇒ a³ + 1³/a³ + 3(a + 1/a) = 64
⇒ a³ + 1/a³ + 3(a + 1/a) = 64
⇒ a³ + 1/a³ + 3(4) = 64
[Since a + 1/a = 4]
⇒ a³ + 1/a³ + 12 = 64
⇒ a³ + 1/a³ = 64 - 12
⇒ a³ + 1/a³ = 52
Now Consider 4(a³ + 1/a³) + 2(a + 1/a)
Here we got to know
• a + 1/a = 4
• a³ + 1/a³ = 52
By substituting the values
= 4(52) + 2(4)
= 208 + 8
= 216
4(a³ + 1/a³) + 2(a + 1/a) = 216
⇒ 4a³ + 4/a³ + 2a + 2/a = 216