(a^2+b^2)x^2+2(bc-ad)x+c^2+d^2=0 than p t ac+bd=0
Answers
- ax² + bx + c = 0
d = b² - 4ac = 0
b = 2(BC - AD)
a = A² + B²
c = C² + D²
(2(BC - AD))² = 4(A² + B²)(C² + D²)
=> 4(BC -AD)² = 4(A² + B²)(C²) + (A² + B²)(D²)
=> (BC -AD)² =(A² + B²)(C²) + (A² + B²)(D²)
=> (BC)² + (AD)² - 2BCAD = A²C² +B²C² + A²D² + B²D²
=> B²C² + A²D² - 2ACBD = A²C² +B²C² + A²D² + B²D²
=> - 2ACBD = A²C² + B²D²
=> 0 = A²C² + B²D² + 2ACBD
=> A²C² + B²D² + 2ACBD = 0
=> (AC + BD)² = 0
=> AC + BD = 0
______________________________________________________________________________
★ Given:-
- ax² + bx + c = 0
Roots are equal & Real when
- d = b² - 4ac = 0
Given equation:-
b = 2(BC-AD)
a = A² + B²
c = C² + D²
Putting these values we get
(2(BC -AD))² = 4(A² + B²)(C² + D²)
=> 4(BC -AD)² = 4(A² + B²)(C²) + (A² + B²)(D²)
Cancelling 4 from both sides
=> (BC -AD)² =(A² + B²)(C²) + (A² + B²)(D²)
Expanding square:-
=> (BC)² + (AD)² -2BCAD = A²C² +B²C² + A²D² + B²D²
=> B²C² + A²D² - 2ACBD = A²C² +B²C² + A²D² + B²D²
Cancelling B²C² + A²D² from both sides,
=> - 2ACBD = A²C² + B²D²
=> 0 = A²C² + B²D² + 2ACBD
=> A²C² + B²D² + 2ACBD = 0
=> (AC + BD)² = 0
=> AC + BD = 0