India Languages, asked by HarshTomar8516, 10 months ago

A=(2x+1)/(2x-1) மற்றும் B=(2x-1)/(2x+1) மற்றும் 1/(A-B)-2B/(A^2-B^2 ) காண்க

Answers

Answered by steffiaspinno
13

A=\frac{2 x+1}{2 x-1} ;  B=\frac{2 x-1}{2 x+1}  மற்றும்  \frac{1}{A-B}-\frac{2 B}{A^{2}-B^{2}}

தீர்வு:

A=\frac{2 x+1}{2 x-1}

A^{2}=\frac{(2 x+1)^{2}}{(2 x-1)^{2}}

B=\frac{2 x-1}{2 x+1}

B^{2} = \frac{(2 x-1)^{2}}{(2 x+1)^{2}}

\frac{1}{A-B} - \frac{2 b}{A^{2}-B^{2}}

\frac{1}{A-B}-\frac{2 B}{(A+B)(A-B)}

மீ.பொ.ம:  A^{2}-B^{2} \Rightarrow(A+B)(A-B)  

\frac{A+B-2 B}{(A+B)(A-B)}  

\frac{A-B}{(A+B)(A-B)}  = \frac{1}{A + B}

A+B=\frac{2 x+1}{2 x-1}+\frac{2 x-1}{2 x+1}

=\frac{(2 x+1)^{2}+(2 x-1)^{2}}{(2 x-1)(2 x+1)}  

=\frac{4 x^{2}+4 x+1+4 x^{2}-4 x+1}{(2 x-1)(2 x+1)}  

=\frac{8 x^{2}+2}{(2 x-1)(2 x+1)}

=\frac{2\left(4 x^{2}+1\right)}{(2 x-1)(2 x+1)}  

=\frac{2\left(4 x^{2}+1\right)}{4 x^{2}+2 x-2 x-1}  

=\frac{2\left(4 x^{2}+1\right)}{\left(4 x^{2}-1\right)}  

\therefore \frac{1}{A-B}=\frac{\left(4 x^{2}-1\right)}{2\left(4 x^{2}+1\right)}

\therefore \frac{1}{A-B}-\frac{2 B}{A^{2}-B^{2}}=\frac{\left(4 x^{2}-1\right)}{2\left(4 x^{2}+1\right)}  

Similar questions