Math, asked by saadiyahshakeel, 8 months ago

a=3+underoot5/2, then find the value of a2+1/a2

Answers

Answered by Rohith200422
6

Question:

Find \: the \: value \: of \:  {a}^{2} +  \frac{1}{ {a}^{2} }

Answer:

The \: value \: of \: \boxed{{a}^{2}  + \frac{1}{ {a}^{2} } \: is \: 7}

Step-by-step explanation:

Given, \: a = \frac{3 +  \sqrt{5} }{2}

 \frac{1}{a}  =  \frac{2}{3 +  \sqrt{5} }

Now, rationalising the denominator

 =  \frac{2(3 -  \sqrt{5}) }{(3 +  \sqrt{5})(3 -  \sqrt{5})  }

 =  \frac{2(3 -  \sqrt{5}) }{ {3}^{2} -  {( \sqrt{5}) }^{2}  }

 =  \frac{2(3 -  \sqrt{5}) }{ 9 - 5  }

 =  \frac{2(3 -  \sqrt{5}) }{ 4}

\boxed{\frac{1}{a} =  \frac{(3 -  \sqrt{5}) }{ 2}}

Now,

a +  \frac{1}{a}  =  \frac{3 +  \sqrt{5} }{2}  +  \frac{3 -  \sqrt{5} }{2}

 =  \frac{3 +  \sqrt{5} + 3 -  \sqrt{5}  }{2}

 =  \frac{6}{2}

a +  \frac{1}{a}  =  3

Squaring on both sides

 {(a +  \frac{1}{a}) }^{2}  =  {3}^{2}

 {a}^{2}  + 2 \times a \times  \frac{1}{a}  +  \frac{1}{ {a}^{2} }  = 9

 {a}^{2}  + 2 +  \frac{1}{ {a}^{2} }  = 9

 {a}^{2}  + \frac{1}{ {a}^{2} }  = 9 - 2

\boxed{{a}^{2}  + \frac{1}{ {a}^{2} }  = 7}

Similar questions