(a-3b)^3+(3b-2c)^3+(2c-a)^3
Answers
Answered by
3
(a-3b)^3+(3b-2c)^3+(2c-a)^3
please mark as brainlist answer
Attachments:
Answered by
4
Answer:
We know the corollary: if a+b+c=0 then a^3 + b^3 + c^3 = 3abc
Using the above corollary taking a=(a−3b), b=(3b−c) and c=(c−a), we have a+b+c=a−3b+3b−c+c−a=0 then the value of (a−3b)^3+(3b−c)^3+(c−a)^3 is:
(a−3b)^3+(3b−c)^3+(c−a)^3
=3[(a−3b)×(3b−c)×(c−a)]=3(a−3b)(3b−c)(c−a)
Hence, (a−3b)^3+(3b−c)^3+(c−a)^3
=3(a−3b)(3b−c)(c−a)
========================
Hope this will help u.
Regards -: ItzMissHeartHacker
Similar questions