India Languages, asked by prabasrao9614, 10 months ago

A=((a&b@c&d)) எனில் I=((1&0@0&1)) A^2-(a+d)A= (bc-ad)I_2 என நிறுவுக

Answers

Answered by Ramankaushik
0

Answer:

hnghbvictim Bynum civil

Answered by steffiaspinno
1

விளக்கம்:

A=\left[\begin{array}{ll}a & b \\c & d\end{array}\right]

I=\left[\begin{array}{ll}1 & 0 \\0 & 1\end{array}\right]

A^{2}-(a+d) A=(b c-a d) I

இடப்பக்கம்

A^{2}-(a+d) A

\Rightarrow A^{2}=A \cdot A=\left[\begin{array}{ll}a & b \\c & d\end{array}\right] \cdot\left[\begin{array}{ll}a & b \\c & d\end{array}\right]

                      =\left[\begin{array}{ll}a^{2}+b c & a b+b d \\a c+c d & b c+b^{2}\end{array}\right]

(a+d) A=(a+d)\left[\begin{array}{ll}a & b \\c & d\end{array}\right]

               =\left[\begin{array}{ll}a(a+d) & b(a+d) \\c(a+d) & d(a+d)\end{array}\right]

               =\left[\begin{array}{ll}a^{2}+a d & a b+b d \\a c+c d & a d+d^{2}\end{array}\right]

A^{2}-(a+d) A =\left[\begin{array}{ll}a^{2}+b c & a b+b d \\a c+c d & b c+b^{2}\end{array}\right]- \left[\begin{array}{ll}a^{2}+a d & a b+b d \\a c+c d & a d+d^{2}\end{array}\right]

                       =\left[\begin{array}{cc}b c-a d & 0 \\0 & b c-a d\end{array}\right]

                        =(b c-a d)\left[\begin{array}{ll}1 & 0 \\0 & 1\end{array}\right]

                        =[b c-a d] I= வலப்பக்கம்

இடப்பக்கம் = வலப்பக்கம்

A^{2}-(a+d) A=(b c-a d) I என நிறுவப்பட்டது.

Similar questions