a√a + b√b =183 & a√b + b√a = 183 find the value of 9(a+b)/5
Redman:
Is a√a+b√b=182?
Answers
Answered by
23
Given :
a√a + b√b =183 & a√b + b√a = 183
To Find :9(a+b)/5
Solution:
Let us assume √a = x and √b =y
⇒a = x² and b = y²
Now let us consider :
a√a + b√b =183
⇒x².x + y².y =183
⇒x³ + y³ =183 -----------equation(1)
Similarly a√b + b√a = 183 we can write as
⇒x².y+y².x=183
⇒xy(x+y)=183 -----------equation(2)
(x+y)³ = x³ + y³ + 3xy(x+y)
⇒(x+y)³ -3xy(x+y) = x³ + y³
⇒(x+y)³ -3*xy*183/xy = 183
⇒(x+y)³- 549 =183
⇒(x+y)³ =732
⇒x+y= 3√732 ≈9.01≈9.0
∴x+ y =9
(x³ + y ³ )=(x+y) (x²+y²-xy)
(x³ + y ³ )=(x+y)(x²+y²) -xy(x+y)
⇒183=9(x²+y²) -183
9(x²+y²)-183=183
9(x²+y²) =366----------equation 3
Required value 9/5 (a+b)
(9/5)[x² +y²]
⇒(1/5)9[x² +y²]
From equation 3
⇒366/5 =73.2
∴the value of 9/5[a+b] = 73.2
a√a + b√b =183 & a√b + b√a = 183
To Find :9(a+b)/5
Solution:
Let us assume √a = x and √b =y
⇒a = x² and b = y²
Now let us consider :
a√a + b√b =183
⇒x².x + y².y =183
⇒x³ + y³ =183 -----------equation(1)
Similarly a√b + b√a = 183 we can write as
⇒x².y+y².x=183
⇒xy(x+y)=183 -----------equation(2)
(x+y)³ = x³ + y³ + 3xy(x+y)
⇒(x+y)³ -3xy(x+y) = x³ + y³
⇒(x+y)³ -3*xy*183/xy = 183
⇒(x+y)³- 549 =183
⇒(x+y)³ =732
⇒x+y= 3√732 ≈9.01≈9.0
∴x+ y =9
(x³ + y ³ )=(x+y) (x²+y²-xy)
(x³ + y ³ )=(x+y)(x²+y²) -xy(x+y)
⇒183=9(x²+y²) -183
9(x²+y²)-183=183
9(x²+y²) =366----------equation 3
Required value 9/5 (a+b)
(9/5)[x² +y²]
⇒(1/5)9[x² +y²]
From equation 3
⇒366/5 =73.2
∴the value of 9/5[a+b] = 73.2
Answered by
18
Solution:
Given :
a√a + b√b =183 ………(1)
a√b + b√a = 183……….(2)
Let √a = x & √b =y
a = x² & b = y²
Put the value of a & √a , b, √b eq 1
a√a + b√b =183
(x² × x )+ (y² × y) =183
x³ + y³ =183 ………………..(3)
Put the value of a & √a , b, √b eq 2
a√b + b√a = 183
(x² × y)+(y² × x) =183
x²y + xy²= 183
xy(x+y)=183 ………………….(4)
[(x+y)³ = x³ + y³ + 3xy(x+y)]
(x+y)³ -3xy(x+y) = x³ + y³
(x+y)³ -3(183)= 183
[ From eq 3 & 4]
(x+y)³- 549 =183
(x+y)³ =183 + 549
(x+y)³ =732
x+y= ³√732 ≈9.01
x+ y =9(approximately)
xy(x+y) =183. (From eq 4)
xy (9)= 183 (x+y=9)
xy = 183/9……………..eq(5)
(x³ + y ³ )=(x+y) (x²+y²-xy)
183=9(x²+y²) -183/9
[From eq 3 & 5]
183 =( 9) (9(x²+y²)-183)/9
183 = (9(x²+y²)-183)
9(x²+y²)=183+183
9(x²+y²) =366
(x²+y²) =366/9……………….(6)
9/5 (a+b) (Given)
(9/5)[x² +y²]
(9/5)[366/9]
From equation 6
366/5 =73.2
Hence, the value of 9/5[a+b] = 73.2≈73
==================================================================
Hope this will help you...
Given :
a√a + b√b =183 ………(1)
a√b + b√a = 183……….(2)
Let √a = x & √b =y
a = x² & b = y²
Put the value of a & √a , b, √b eq 1
a√a + b√b =183
(x² × x )+ (y² × y) =183
x³ + y³ =183 ………………..(3)
Put the value of a & √a , b, √b eq 2
a√b + b√a = 183
(x² × y)+(y² × x) =183
x²y + xy²= 183
xy(x+y)=183 ………………….(4)
[(x+y)³ = x³ + y³ + 3xy(x+y)]
(x+y)³ -3xy(x+y) = x³ + y³
(x+y)³ -3(183)= 183
[ From eq 3 & 4]
(x+y)³- 549 =183
(x+y)³ =183 + 549
(x+y)³ =732
x+y= ³√732 ≈9.01
x+ y =9(approximately)
xy(x+y) =183. (From eq 4)
xy (9)= 183 (x+y=9)
xy = 183/9……………..eq(5)
(x³ + y ³ )=(x+y) (x²+y²-xy)
183=9(x²+y²) -183/9
[From eq 3 & 5]
183 =( 9) (9(x²+y²)-183)/9
183 = (9(x²+y²)-183)
9(x²+y²)=183+183
9(x²+y²) =366
(x²+y²) =366/9……………….(6)
9/5 (a+b) (Given)
(9/5)[x² +y²]
(9/5)[366/9]
From equation 6
366/5 =73.2
Hence, the value of 9/5[a+b] = 73.2≈73
==================================================================
Hope this will help you...
Similar questions