(a- b)³-(b-c³)+(c-a)³
Answers
Answered by
0
Answer:
check out my slon please
Attachments:
Answered by
0
(a - b)³ = a³ - 3a²b + 3ab² - b³
Hence,
Applying the identity with the values
we get,
(a - b)³ = a³ - 3a²b + 3ab² - b³,
(b - c)³ = b³ - 3b²c + 3bc² - c³,
(c - a)³ = c³ - 3c²a + 3ca² - a³
Hence,
(a - b)³ + (b - c)³ + (c - a)³ = a³ - 3a²b + 3ab² - b³ + b³ - 3b²c + 3bc² - c³ + c³ -3c²a +3ca² - a³
⇒ a³ - a³ + b³ - b³ + c³ - c³ -3a²b + 3ab² -3b²c + 3bc² + 3c²a + 3ca²
⇒ - 3ab(a-b) - 3bc(b - c) - 3ac(c - a)
⇒ -3(a²b + ab² + b²c + bc² + c²a + ca²) (or -3[ab(a-b)+bc(b-c)+ac(a-c)])
Similar questions