a'b+b'c'+ab+b'c=1
prove that
Answers
Answered by
2
⟶
ar(PQR)
ar(ABC)
=
(QR)
2
(BC)
2
\longrightarrow{\rm{\dfrac{100}{121} = \dfrac{(5)^{2} }{(QR)^{2}}}}⟶
121
100
=
(QR)
2
(5)
2
\longrightarrow{\rm{\dfrac{100}{121} = \dfrac{25}{(QR)^{2}}}}⟶
121
100
=
(QR)
2
25
\longrightarrow{\rm{100 \times {QR}^{2} = 121 \times 25}}⟶100×QR
2
=121×25
\longrightarrow{\rm{100 \times {QR}^{2} = 3025}}⟶100×QR
2
=3025
\longrightarrow{\rm{100 \times {QR}^{2} = 3025}}⟶100×QR
2
=3025
\longrightarrow{\rm{ {QR}^{2} =30.25}}⟶QR
2
=30.25
\longrightarrow{\rm{ {QR} = \sqrt{30.25}}}⟶QR=
30.25
\longrightarrow{\rm{ {QR} = 5.5}}⟶QR=5.5
Therefore, measure of QR is 5.5 cm.
Similar questions