A+B+C=180then prove that cos2A+cos2B-cos2C=1-4sinAsinBsinC
Answers
Answered by
103
cos2a + cos2b + cos2c
= cos2a + [ cos(2b) + cos(2c) ]
= cos2a + 2*cos(b + c)*cos(b - c)
= (2cos²a - 1) + 2cos(180 - a)*cos(b - c)
= 2cos²(a) - 1 - 2cos(a)*cos(b - c)
= - 1 + 2cos(a) * [cos(a) - cos(b - c)]
= - 1 + 2cos(a) [ cos {180 - (b + c) } - cos(b - c) ]
= - 1 + 2cos(a) [ - cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ 2*cos(b)*cos(c) ]
= - 1 - 4 cosa cosb cosc
= cos2a + [ cos(2b) + cos(2c) ]
= cos2a + 2*cos(b + c)*cos(b - c)
= (2cos²a - 1) + 2cos(180 - a)*cos(b - c)
= 2cos²(a) - 1 - 2cos(a)*cos(b - c)
= - 1 + 2cos(a) * [cos(a) - cos(b - c)]
= - 1 + 2cos(a) [ cos {180 - (b + c) } - cos(b - c) ]
= - 1 + 2cos(a) [ - cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ 2*cos(b)*cos(c) ]
= - 1 - 4 cosa cosb cosc
rohitkumargupta:
i think my answer is right
Answered by
43
hiii!!! folk..
A+B+C=180°(given)
=)from lhs
cos2A+,cos2B-cos2C
=)2cos(2A+2B)/2*Cos(2A-2B/2)-cos2C
=)2cos(A+B)*cos(A-B)+2cos^2C+1. √【cos2C=2cos,^2C+1】
=)2cos(π-C)*cos(A-B)+2cos,^2+1
=)1-2cosC/2(cosA-B)+cos【π-(A+B)】
=)1-2CosC/2(cosA-B)-cosC(A+B)
=)1-2cosC(2sin(A-B+A+B/2)*sin(,A+B-A+B)/2
=)1-2cosC(2sunA*sinB)
=)1-4sinA*sinB*sinC=Rhs.prooved.
hope it help you.
@rajukumar☺
A+B+C=180°(given)
=)from lhs
cos2A+,cos2B-cos2C
=)2cos(2A+2B)/2*Cos(2A-2B/2)-cos2C
=)2cos(A+B)*cos(A-B)+2cos^2C+1. √【cos2C=2cos,^2C+1】
=)2cos(π-C)*cos(A-B)+2cos,^2+1
=)1-2cosC/2(cosA-B)+cos【π-(A+B)】
=)1-2CosC/2(cosA-B)-cosC(A+B)
=)1-2cosC(2sin(A-B+A+B/2)*sin(,A+B-A+B)/2
=)1-2cosC(2sunA*sinB)
=)1-4sinA*sinB*sinC=Rhs.prooved.
hope it help you.
@rajukumar☺
Similar questions