a+b+c=6,ab+bc+ca=11,thena^3+b^3+c^3-3abc=?
Answers
Answered by
0
Hi friend
---------------
Your answer
--------------------
Given that : - (a + b + c) = 6 and (ab + bc + ca ) = 11.
To calculate : - Value of (a³ + b³ + c³ - 3abc).
Now,
----------
(a + b + c)² = (a² + b² + c² - ab - bc - ca)
=> (6)² = [ (a² + b² + c²) - (ab + bc + ca) ]
=> 36 = (a² + b² + c²) - 11
=> (a² + b² + c²) = 36 + 11
=> (a² + b² + c²) = 47
Then,
-----------
a³ + b³ + c³ - 3abc
=> (a + b + c)(a² + b² + c² - ab - bc - ca)
=> 6 × [(a² + b² + c²) - (ab + bc + ca)]
=> 6 × (47 - 11)
=> 6 × 36
=> 216
HOPE IT HELPS
---------------
Your answer
--------------------
Given that : - (a + b + c) = 6 and (ab + bc + ca ) = 11.
To calculate : - Value of (a³ + b³ + c³ - 3abc).
Now,
----------
(a + b + c)² = (a² + b² + c² - ab - bc - ca)
=> (6)² = [ (a² + b² + c²) - (ab + bc + ca) ]
=> 36 = (a² + b² + c²) - 11
=> (a² + b² + c²) = 36 + 11
=> (a² + b² + c²) = 47
Then,
-----------
a³ + b³ + c³ - 3abc
=> (a + b + c)(a² + b² + c² - ab - bc - ca)
=> 6 × [(a² + b² + c²) - (ab + bc + ca)]
=> 6 × (47 - 11)
=> 6 × 36
=> 216
HOPE IT HELPS
Similar questions