a+b+c=9 and ab+bc+ca=40 then find the value of a2+b2+c2
Answers
Answered by
18
a + b + c = 9
Square on both sides,
( a + b + c )^2 = 9^2
⇒ a^2 + b^2 + c^2 + 2 ( ab + bc + ca ) = 81
⇒ a^2 + b^2 + c^2 + 2( 40 ) = 81
⇒ a^2 + b^2 + c^2 + 80 = 81
⇒ a^2 + b^2 + c^2 = 81 - 80
⇒ a^2 + b^2 + c^2 = 1
Answered by
6
We know that
(a+b+c ) ^2=a ^2+b^2+c^2+2ab+2bc+2ca
(a+b+c)^2=a^2+b^2+c^2+2 (ab +bc+ca)
(9)^2=a^2+b^2+c^2+2×40
81=a^2+b^2+c^2+80
81-80=a^2+b^2+c^2
1=a^2+b^2+c^2.
HOPE THE ANSWER HELPS YOU. PLS PLS MARK THE ANSWER AS BRAINLIEST ANSWER.
(a+b+c ) ^2=a ^2+b^2+c^2+2ab+2bc+2ca
(a+b+c)^2=a^2+b^2+c^2+2 (ab +bc+ca)
(9)^2=a^2+b^2+c^2+2×40
81=a^2+b^2+c^2+80
81-80=a^2+b^2+c^2
1=a^2+b^2+c^2.
HOPE THE ANSWER HELPS YOU. PLS PLS MARK THE ANSWER AS BRAINLIEST ANSWER.
Similar questions