Math, asked by omraj567890gmailcom, 1 year ago

a + b + C is equal to 9 and a square + b square + c square is equal to 35 find the value of a cube plus b cube plus c cube minus 3 a b


deeku004: I will answer your question after I solve it a paper

Answers

Answered by Poornadhithya
294

Given (a + b + c) = 9

Squaring on both the sides, we get

(a + b + c)2 = 92

⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81

⇒ 35 + 2(ab + bc + ca) = 81

⇒ 2(ab + bc + ca) = 81 – 35 = 46

⇒ ab + bc + ca = 23 → (1)

Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)

= 9(35 – 23)

= 9(12) = 108

Answered by payalchatterje
2

Answer:

Required value is 108.

Step-by-step explanation:

Given,a + b + c = 9

and  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 35

Here we want to find value of

 {a}^{3}  +  {b}^{3}  +  {c}^{3}

We know,

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ac).....(1)

and

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  =  {(a + b + c)}^{2}  - 2(ab + bc + ca)

35 =  {9}^{2}  - 2(ab + bc + ca) \\ 35 = 81 - 2(ab + bc + ca) \\ 2(ab + bc + ca) = 81 - 35 \\ 2(ab + bc + ca) = 46 \\ ab + bc + ca =  \frac{46}{2}  \\ ab + bc + ca = 23.........(2)

From equation (1),

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ac)

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 9 \times (35 - 23)

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc \: = 108

Required value is 108.

This is a chapter of Algebra.

Some important formulas of Algebra,

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

{a}^{2}  -  {b}^{2}  = (a + b)(a - b)\\{a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab\\{a}^{2}  +  {b}^{2}  =  {(a - b)}^{2}  + 2ab\\{a}^{3}  -  {b}^{3}  = (a  -  b)( {a}^{2}   +  ab +  {b}^{2} )\\{a}^{3}   +   {b}^{3}  = (a + b)( {a}^{2}    -   ab +  {b}^{2} )

Similar questions