Physics, asked by saigneni, 1 year ago

a body if mass 100 kg accelerated uniformly from a velocity of 5 ms-1 to 10 s-1 in 5 s 1. the initial momentum of the body
2.the final momentum of the body
3.the force acting on the body

Answers

Answered by nas80
2

Answer:

m=100 kg

v1 =5ms

v2=10ms

Explanation:

1. p=mv1

p=100[5]

p= 500ms for the initial momentum

2. the final momentum is v2

p=mv2

p=100[10]

p=1000ms for the final momentum

Answered by ShivamKashyap08
4

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

m = 100 kg.

u = 5 m/s.

v = 10 m/s.

t = 5 seconds.

\huge{\bold{\underline{Explanation:-}}}

  • Initial momentum.

\large{\bold{P = mu}}

Substituting the values.

\large{P = 100 \times 5}

\large{P = 500 \: Kg m/s}

\huge{\boxed{\boxed{P = 500 \: Kgm/s}}}

So, initial momentum of the body is 500 kg m/s.

  • Final momentum.

\large{\bold{P = mv}}

\large{P = 100 \times 10}

\large{P = 10,000 \: Kgm/s}

\huge{\boxed{\boxed{P = 10,000 \: Kgm/s}}}

So, Final momentum of the body is 10,000 Kg m/s.

  • Force acting on body.

\large{\bold{F = \frac{ \Delta P}{T}}}

So, finding the change in momentum.

\large{\bold{ \Delta P = m(v - u)}}

Substituting the values.

\large{ \Delta P = 100 (10 - 5)}

\large{ \Delta P = 100 \ times 5}

\large{ \Delta P = 500 \: Kgm/s}

Substituting in Force formula.

\large{\bold{F = \frac{ \Delta P}{T}}}

\large{F = \frac{500}{5}}

\large{F = 100 \: N}

\huge{\boxed{\boxed{F = 100N}}}

So, Force acting on the body is 100N.

Similar questions