Math, asked by dhruvchauhan23092004, 9 months ago

A CENTER OF THE CIRCLE IS (4a-2,6a+2) AND IS PASSING THE POINT(-6,-2) IF THE DIAMETER OF THE CIRCLE IS 40, THAN FIND THE VALUE OF a .

Answers

Answered by Anonymous
194

\huge{\underline{\red{\mathcal{ANSWER:}}}}

{\underline{\bf{Given:}}}

  • \tt{Center\;of\;circle = (4a - 2,\;6a + 2)}
  • \tt{Line\;passing\;through\;point = (-6, -2)}
  • \tt{Diameter\;of\;circle = 40\;units}
  • \tt{Radius\;of\;circle = 20\;units}

{\underline{\bf{To\;Find:}}}

  • \tt{Value\;of\;a.}

{\underline{\bf{Formula\;used:}}}

  • \sf{Distance=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\;\;\;\;\;[Distance\;Formula]}

\underline{\tt{Now,\;put \;the\;value\;in\;the\;formula,}}

\sf{\implies Distance=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}

\tt{\implies \sqrt{[4a-2-(-6)]^{2}+[6a+2-(-2)]^{2}}=20}

\tt{\implies \sqrt{[4a+4]^{2}+[6a+4]^{2}}=20}

\tt{\implies \sqrt{[16a^{2}+16+32a]+[36a^{2}+16+48a]}=20}

\tt{\implies \sqrt{16a^{2}+16+32a+36a^{2}+16+48a}=20}

\tt{\implies \sqrt{52a^{2}+80a+32}=20}

\underline{\tt{Now,\;square\;both\;the\;sides,}}

\tt{\implies 52a^{2}+80a+32=400}

\tt{\implies 52a^{2}+80a=368}

\sf{\implies 52a^{2}+80a-368=0}

\underline{\tt{Now, take\;4\;common,\;we\;get}}

\tt{\implies 4(13a^{2}+20a-92)=0}

\tt{\implies 13a^{2}+20a-92=0}

\underline{\tt{Now,\;by\;splitting\;\;middle\;term\;solve\;the\;equation,}}

\tt{\implies 13a^{2}+46a-26a-92=0}

\tt{\implies a(13a+46)-2(13a+46)=0}

\tt{\implies (a-2)(13a+46)=0}

\tt{\implies a=2\;or\;-\dfrac{46}{13}}

\underline{\tt{Distance\;cannot\;be\;negative.\;Hence,\;a=2.}}

Answered by lalitameena9055
1

Step-by-step explanation:

here is your answer mate

mark me as brainliest

Attachments:
Similar questions