Math, asked by Anonymous, 6 months ago

A circus artist is climbing a 20m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30degree.

Answers

Answered by jainmuskaan2007
1

Answer:

Step-by-step explanation:

Let AB be the vertical pole and CA be the rope. Then,

∠ACB=30  

o

 and AC=20 m

In right △ ABC,

sin30  

o

=  

AC

AB

​  

 

2

1

​  

=  

20

AB

​  

 

AB=10 m

Therefore, the height of the pole is 10 m

Answered by nakrasameer18
0

Step-by-step explanation:

\mathfrak{ \huge{ \green{ \underline{given}}}} \\  \mathfrak{ \large{ \red{ac \:  =  \: 20 \: m}}} \\  \mathfrak{ \large{ \red{angle \: of \: elevation = {30}^{o}}}} \\  \mathfrak{ \huge{ \green{ \underline{to \: find}}}} \\  \mathfrak{ \large{ \red{height \: of \:  pole \: (h) \: =  \: ?}}} \\ \mathfrak{ \huge{ \green{ \underline{formula \: to \: be \: used}}}} \\  \mathfrak{ \large{ \red{sin \: θ  \:  =  \:  \frac{perpendicular}{hypotenuse} }}} \\  \mathfrak{ \large{ \red{ \sin \:   {30}^{o}  \:  =  \:  \frac{1}{2}  }}} \\  \mathfrak{ \huge{ \green{ \underline{solution}}}} \\  \mathfrak{ \large{ \blue{sin \: θ  \:  =  \:  \frac{perpendiular}{hypotenuse} }}} \\  \mathfrak{ \large{ \blue{ \sin \: c  \:  =  \: \frac{ab}{ac}  }}} \\  \mathfrak{ \large{ \blue{ \sin \:  {30}^{o}  \:  =  \:  \frac{ab}{20}   }}} \\  \mathfrak{ \large{ \blue{ \frac{1}{2} \:  =  \:  \frac{ab}{20}  }}} \\  \mathfrak{ \large{ \blue{ab \:  =  \:  \frac{20}{2} }}} \\  \mathfrak{ \large{ \blue{ab \:  =  \: 10}}} \\  \mathfrak{ \large{ \orange{ \underline{ => height \: of \: pole \:  =  \: 10 \: m}}}}

Similar questions