Math, asked by kvnmurthy19, 1 year ago

A cylindrical tub of radius 5 cm and length 9.8 cm is full of water. A solid in the form of right circular cone mounted on a hemisphere is immersed into the tub. The radius of the hemisphere is 3.5 cm and height of cone outside the hemisphere is 5 cm. Find the volume of water left in the tub 

\pi = 3 \frac{1}{7}

Answers

Answered by siddhartharao77
10

Answer:

616 cm³

Step-by-step explanation:

Length of cylindrical tub = 9.8 cm.

Radius of cylindrical tub = 5 cm.

Volume of cylindrical tub = πr²h

                                         = (22/7) * (5)² * 9.8

                                         = 770 cm³


Radius of hemisphere = 3.5 cm

Volume of hemisphere = (2/3) πr³

                                      = (2/3) * (22/7) * (3.5)³

                                      = (11 * 7 * 7)/(3 * 2)

                                      = 539/6 cm³


Height of cone = 5 cm, Radius of cone = 3.5 cm

Volume of cone = (1/3) πr²h

                          = (1/3) * (22/7) * (3.5)² * 5

                          = 385/6 cm³


Volume of solid = Volume of hemisphere + Volume of the cone

                          = 539/6 + 385/6

                          = 154 cm³


∴ Volume of water left in the tub = Volume of cylinder - Volume of solid

                                                      = 770 - 154

                                                      = 616 cm³



Hope it helps!

Answered by Siddharta7
1

Step-by-step explanation:

volume of water in cylindrical tub=volume of the hemisphere+volume of the cone

={[(2×22×7×7×7)/(3×7×2×2×2)]+[(1×22×7×7×5)/(3×7×2×2)]}

=(539/6 +385/6)

=924/6

=154cm³

volume of tub=(22×5×5×9.8)/7

=770 cm³

volume of water left in the tub=volume of tub -volume of solid immersed

=770-154

=616cm³

Similar questions