Math, asked by vaishalibaghel, 1 year ago

a cylindrical water tank of diameter 1.4 M and height 2.1 M is being fed by A pipe of diameter 3.5 CM through which water flow at the rate of 2 m per second in how much time the tank will be filled

Answers

Answered by mukulkum0121gmailcom
15
HEY HERE IS YOUR ANSWER.
HOPE IT WILL HELP .
IF IT HELPS MARK IT AS BRAINLIST.
Attachments:

vaishalibaghel: thank u so much
mukulkum0121gmailcom: plzz give thanks and mark as brainlist
Answered by Rizakhan678540
2

Gɪᴠᴇɴ :

Diameter of a cylindrical water tank is 1.4 m.

\longmapsto\:\:\bf{Diameter\:(d_t)\:=\:1.4\:m} \\

Height of the tank is 2.1 m.

\longmapsto\:\:\bf{Height\:(h_t)\:=\:2.1\:m} \\

Aɴᴅ,

Diameter of a cylindrical pipe is 3.5 cm.

\longmapsto\:\:\bf{Diameter\:(d_p)\:=\:3.5\:cm\:=\:0.035\:m} \\

Water flows through the pipe is 2 m/s.

Tᴏ Fɪɴᴅ :

Time taken to fill the water tank.

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Volume of a cylinder is,

\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{Volume\:=\:\pi\:r^2\:h\:}}}}}} \\

Cᴀsᴇ - 1 :

★ Here we calculate the volume of the cylindrical water tank.

Wʜᴇʀᴇ,

Radius (rₜ) = \bf{\dfrac{d_t}{2}\:=\:\dfrac{1.4}{2}} = 0.7 m

Height (hₜ) = 2.1 m

Tʜᴜs,

✯ Volume of the water tank is,

\bf{Volume\:=\:\pi\times{(0.7)^2}\times{2.1}\:} \\

\bf{Volume\:=\:\pi\times{0.49}\times{2.1}\:} \\

\bf\blue{Volume_{(tank)}\:=\:1.029\pi\:m^3} \\

Cᴀsᴇ - 2 :

★ Here we calculate the volume of the cylindrical pipe.

Wʜᴇʀᴇ,

Radius (rₚ) = \bf{\dfrac{d_p}{2}\:=\:\dfrac{0.035}{2}} = 0.0175 m

Height (hₚ) = Rate of flow of water = 2 m

\bf{Volume\:=\:\pi\times{(0.0175)^2}\times{2}\:} \\

\bf{Volume\:=\:\pi\times{0.00030625}\times{2}\:} \\

\bf{Volume\:=\:0.0006125\pi\:m^3} \\

\bf\purple{Volume_{(pipe)}\:=\:6.125\pi\:\times{10^{-4}}\:m^3} \\

Nᴏᴡ,

➣ Let us assume that t seconds is required to fill the water tank.

Tʜᴜs,

↝ Volume of the water flows through the pipe in t seconds is,

:\longrightarrow\:\:\bf{6.125\pi\:\times{10^{-4}}\times{t}} \\

✯ We have, volume of the water flows through the pipe in t seconds is equal to the volume of the water tank.

\implies\:\bf{6.125\pi\:\times{10^4}\times{t}\:=\:1.029\pi\:} \\

:\implies\:\bf{t\:=\:\dfrac{1.029\pi}{6.125\pi\:\times{10^{-4}}}\:} \\

:\implies\:\bf{t\:=\:\dfrac{1.029}{6.125}\:\times{10^{4}}\:} \\

:\implies\:\bf{t\:=\:0.168\times{10^4}\:} \\

:\implies\:\bf\pink{t\:=\:1680\:seconds\:=\:28\:minutes} \\

\Large\bf{Therefore,}

The time taken to fill the water tank is 1680 seconds or 28 minutes.

Similar questions