Math, asked by m9i6shshuriprathoshi, 1 year ago

A flooring tile has the shape of a parallelogram whose base is 24 cm and the corresponding height is 10 cm.how many such tiles are required to cover a floor of area 1080 meter square

Answers

Answered by anupam2002
17
area of one tile =base * height
                         =24*10
                         =0.24*0.1 m2
                          =0.024 m2
total area of floor=1080 m2
no of tiles required= 1080/0.024
                             =45000tiles

Answered by silentlover45
3

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: Base \: \: = \: \: {24m}
  • \: \: \: \: \: \: \: Height \: \: = \: \: {10m}
  • \: \: \: \: \: \: \: Area \: \: = \: \: {1080} \: {m}^{2}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Number \: \: of \: \: titles \: \: requested \: \: to \: \: cover \: \: a \: \: floor \: \: of \: \: area \: \: {1080} \: {m}^{2}?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Area \: \: of \: \: parallelogram \: \: \leadsto \: \: base \: \times \: height

\: \: \: \: \: \: \: \leadsto \: \: {24} \: \: \times \: \: {10}

\: \: \: \: \: \: \: \leadsto  \: \: {240m}

  • \: \: \: \: \: \: \: Now, \\ Area \: \: of \: \ floor \: \: = \: \: {1080} \: {m}^{2}

\: \: \: \: \: \: \: \therefore Number \: \: of \: \: tiles \: \: required \: \: to \: \: cover \: \: floor \: \: = \: \: \frac{Area \: \: of \: \: floor }{Area \: \: of \: \: {1} \: tiles}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{1080}{240}

\: \: \: \: \: \: \: \leadsto  \: \: {4.5}

  • \: \: \: \: \: \: \: Hence, \: \: {4.5} \: \: tiles \: \: are \: \: required \: \: to \: \: cover \: \: a \: \: floor \: \: a \: \: area \: \: {1080} \: {m}^{2}

\underline\mathfrak{Properties \: \: of \: \: Parallelogram:-}

\: \: \: \: \: \: \: \therefore There \: \: are \: \: some \: \: important \: \: properties \: \:  of \: \: parallelograms:

  • \: \: \: \: \: \: \: In \: \: a \: \: parallelogram \: \: opposite \: \: sides \: \: are \: \: equal.

  • \: \: \: \: \: \: \: In \: \: a \: \: parallelogram \: \: opposite \: \: angels \: \: are \: \: equal.

  • \: \: \: \: \: \: \: The \: \: sum \: \: of \: \: adjacent \: \: angles \: are \: \: supplementary \: \: \\ \: \: \: \: \: \: \: \: \: \: \: \: i.e. \: \: {( \angle {B} \: + \: \angle {C } \: \: = \: \: {180} \degree)}.

  • \: \: \: \: \: \: \: In \: \: a \: \: parallelogram, \: \: if \: \: one \: \: angle \: \: is \: \: right, \\ \: \: then \: \: all \: \: angles \: \: are \: \: right.

  • \: \: \: \: \: \: \: Diagonals \: \: of \: \: a \: \: parallelogram \: \: bisect \: \:  each \: \: other.

  • \: \: \: \: \: \: \: In \: \: a \: \: parallelogram, \\ \: \: each \: \: diagonal \: \: of \: \: a \: \: parallelogram \: \: divides \: \: it \: \: into \: \: two \: \: congruent \: \: triangles

\underline\mathfrak{Important \: \: formula:-}

  • \: \: \: \: \: \: \: Area \: \: of \: \: Parallelogram \: \: = \: \: B \: \times \:  H

  • \: \: \: \: \: \: \: Perimeter \: \: of a \: \: Parallelogram \: \: = \: \: {2}{(Base \: + \: Height)}

__________________________________

Similar questions