Chemistry, asked by AestheticSky, 1 month ago

A Gaseous Alkane is exploded with Oxygen. The volume of \sf O_{2} for complete combustion of alkane to \sf CO_{2} formed is in the ratio 7 : 4. Find the molecular formula of alkane.

Answers

Answered by ValeryLegasov
7

Answer:

C2H6 ethane the explanation is in the image

Attachments:
Answered by Anonymous
158

Given :-

A Gaseous Alkane is exploded with Oxygen. The volume of \sf O_{2} for complete combustion of alkane to \sf CO_{2} formed is in the ratio 7 : 4

To Find :-

The molecular formula of alkane

Solution :-

At First , Write the general Equation for the combustion of Alkanes i.e ;

 { \bigstar { \underline { \boxed { \red { \bf { C_{n}H_{2n+2} + { \bigg ( \dfrac{3n+1}{2} } \bigg )O_{2}  \longrightarrow n CO_{2} + ( n + 1 ) H_{2}O + ∆  }}}}}{\bigstar}}

Here , ∆ Represents Energy

Now , As here complete combustion is taking place . So ;

  • Volume of  { \sf { O_{2} = \dfrac{3n + 1}{2} }}

  • Volume of  \sf CO_{2} = n

Also Given that , ratio of volume of  \sf O_{2} \:\: to \: \: CO_{2} = 7 : 4 . Which Implies ;

 \quad \qquad { : \longmapsto { \tt { \dfrac{\dfrac{3n+1}{2}}{n} = \dfrac{7}{4} }}}

 \quad \qquad { : \longmapsto { \tt \dfrac{3n + 1}{2} × \dfrac{1}{n} = \dfrac{7}{4} }}

 \quad \qquad { : \longmapsto { \tt \dfrac{3n+1}{n} = \dfrac{7}{4} × 2 }}

Now , Seperate LCM of LHS ;

 \quad \qquad { : \longmapsto { \tt \dfrac{3n}{n} + \dfrac{1}{n}  = \dfrac{7}{2} }}

 \quad \qquad { : \longmapsto { \tt 3 + \dfrac{1}{n}  = \dfrac{7}{2} }}

Transpose 3 to RHS ;

 \quad \qquad { : \longmapsto { \tt \dfrac{1}{n} = \dfrac{7}{2} - 3 }}

 \quad \qquad { : \longmapsto { \tt \dfrac{1}{n} = \dfrac{7 - 6}{2} }}

 \quad \qquad { : \longmapsto { \tt \dfrac{1}{n} = \dfrac{1}{2} }}

Now , Reciprocal both sides ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { { \bf \therefore n = 2  }}}}}{\bigstar}}

Now , Put value of " n " in the general formula of alkane we have ;

 \quad \qquad { \sf { C_{n} H_{2n+2} }}

 \quad \qquad { \sf : \longmapsto { C_{2} H_{2 × 2 + 2} }}

 \quad \qquad { \sf : \longmapsto { C_{2} H_{4+2} = \:\: C_{2} H_{6} }}

 { \bigstar { \underline { \boxed { \red { \bf  { \therefore Required \:\: Compound \:\: = C_{2} H_{6} = \: Ethane }}}}}}{\bigstar}

Similar questions