Math, asked by Bhavik44, 1 year ago

a+ib form of (cosx+isinx)(cosy+isiny)/(cotu+i)(1+itanv)​

Answers

Answered by MaheswariS
5

Answer:

\frac{(cosx+i\:sinx)(cosy+i\:siny)}{(cotu+i)(1+i\:tanv)}=(sinu\:cosv)cos((x+y)-(u+v))+i\:(sinu\:cosv)sin((x+y)-(u+v))

Step-by-step explanation:

Euler's formula:

\boxed{e^{i\theta}=cos\theta+i\:sin\theta}

Given:

\frac{(cosx+i\:sinx)(cosy+i\:siny)}{(cotu+i)(1+i\:tanv)}

=\frac{e^{ix}.e^{iy}}{(\frac{cosu}{sinu}+i)(1+i\frac{cosv}{sinv}})

=\frac{e^{i(x+y)}}{(\frac{cosu+i\:sinu}{sinu})(\frac{cosv+i\:sinv}{cosv})}

=\frac{e^{i(x+y)}}{\frac{e^{iu}}{sinu}.\frac{e^{iv}}{cosv}}

=\frac{e^{i(x+y)}}{\frac{e^{i(u+V)}}{sinu\:cosv}}

=\frac{e^{i(x+y)}.e^{-i(u+v)}}{sinu\:cosv}

=e^{i((x+y)-(u+v))}(sinu\:cosv)

=[cos((x+y)-(u+v))+i\:sin((x+y)-(u+v))](sinu\:cosv)

=(sinu\:cosv)cos((x+y)-(u+v))+i\:(sinu\:cosv)sin((x+y)-(u+v))

\implies\:\frac{(cosx+i\:sinx)(cosy+i\:siny)}{(cotu+i)(1+i\:tanv)}=(sinu\:cosv)cos((x+y)-(u+v))+i\:(sinu\:cosv)sin((x+y)-(u+v))

Similar questions