Math, asked by Anonymous, 6 months ago

(a) If x+y+z=0, show that xcube+ycube+zcube=3xyz.
(b) show that (a-b)cube+(b-c) cube+(c-a) cube=3(a-b)(b-c)(c-a)
answer fast as possible.​

Answers

Answered by TakenName
124

Is it true that \bold{x+y+z=0} then \bold{x^3+y^3+z^3=3xyz}?

To show this, we have to simplify the given equality.

→ Use transposition to simplify

\bold{x^3+y^3+z^3-3xyz=0}

→ Identity applies here

\bold{(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0}

→ Find the solution

\bold{x+y+z=0} or \bold{x^2+y^2+z^2-xy-yz-zx=0}

If we substitute the first solution, it satisfies the second. Hence shown.

---

Now let's move on to the last question.

We can solve the question based on the first one.

→ Take substitution.

  • \bold{x=a-b}
  • \bold{y=b-c}
  • \bold{z=c-a}

\bold{x+y+z=0} so \bold{x^3+y^3+z^3=3xyz}

→ Take substitution again. Hence shown.

\bold{\therefore (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)}

I hope it helps. The main part is identity, so I recommend you to know the identity.

Answered by Anonymous
1

Question= If x+y+z=0, show that xcube+ycube+zcube=3xyz.

(b) show that (a-b)cube+(b-c) cube+(c-a) cube=3(a-b)(b-c)(c-a)

Answer⬇️

we know

a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

we have,

x=a(b-c) or x/a=(b-c)

y=b(c-a) or y/b=(c-a)

z=c(a-b) or z/c=(a-b)

now,

(x/a)^3+(y/b)^3+(z/c)^3–3(x/a)(y/b)(z/c)

=(x/a+y/b+z/c){(x/a)^2+(y/b)^2+(z/c)^2-(x/a)(y/b)-(y/b)(z/c)-(z/c)(x/a)}

={(b-c)+(c-a)+(a-b)}{ same}

={b-c+c-a+a-b}{ same }

=0{ same }=0

so

(x/a)^3+(y/b)^3+(z/c)^3=3(x/a)(y/b)(z/c)

=3xyz/abc proved

Similar questions