Math, asked by sonigovind683, 11 months ago

a man lent a part of ₹30000 at 12% and the remaining at 10% simple intrest. the total intrest he received after 2 years is ₹36480.calculate the amount he lent at 12%. Plz help me with this question​

Answers

Answered by BrainlyConqueror0901
37

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Amount\:lent\:at\:12\%=12000\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Amount \: lent = 30000 \: rupees \\  \\  \tt:  \implies  Rate(r_{1}) = 12\% \\  \\ \tt:  \implies  Rate(r_{2}) = 10\% \\  \\ \tt:  \implies  Time(t) = 2 \: years \\  \\  \tt:  \implies Amount \: after \: two \: years = 36480 \: rupees \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Amount \: lent \: at \: 12\% = ?

• According to given question :

 \tt \circ \: Let \: amount \: lent \: at \: 12\% = x \\  \\  \tt \circ \: Amount \: lent \: at \: 10\% = 30000 - x    \\ \\ \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p  \times  r_{1}\times t}{100}  \\  \\ \tt:  \implies S.I=  \frac{x \times 12 \times 2}{100}  \\  \\  \green{\tt:  \implies S.I = 0.24x} \\  \\  \bold{Similarly \: for \:  r_{2} } \\  \tt:  \implies   S.I_{1} =  \frac{(30000 - x) \times 10 \times 2}{100}  \\  \\  \tt:  \implies   S.I_{1} = \frac{600000 - 20x}{100}  \\  \\   \green{\tt:  \implies   S.I_{1} =6000 - 0.2x} \\  \\  \bold{For \: total \: Simple \: Interest} \\  \tt:  \implies   S.I_{t}=36480 - 30000 \\  \\ \tt:  \implies  S.I + S.I_{1} = 6480 \\  \\ \tt:  \implies 0.24x + 6000 - 0.2x = 6480 \\  \\ \tt:  \implies 0.04x = 6480 - 6000 \\  \\ \tt:  \implies 0.04x = 480 \\  \\ \tt:  \implies x =  \frac{480}{0.04}  \\  \\  \green{\tt:  \implies x = 12000 \: rupees} \\  \\   \green{\tt \therefore Amount \: lent \: at \: 12\% \: is \: 12000 \: rupees}

Answered by AdorableMe
101

Given:-

  • Rate, r = 12 %
  • S.I = 10 %
  • Time, n = 2 years
  • Total interest received = ₹ 36480

To find:-

The amount he lent at 12%.

Solution:-

Let the sum lent at the rate of 12 % per annum be ₹ x.

So, the lent at 10 % p.a. is ₹ (3000-x).

S.I at the end of 2 years =  ₹ (36480 - 30000)

= ₹ 6480

So,

[(x*12*2)/100] + {[(3000-x)*10*2]/100} = 6480

24x + 600000 - 20x = 648000

⇒4x = 48000

\boxed{x=Rs.\ 12000}

Similar questions