Math, asked by dharanisimla, 1 year ago

A manufacturer has 600 litres of a 12-/- solution of acid . how many litres of a 30-/- acid solution must be added to it , so that the acid content in the resulting mixture will be more than 15-/-. But less than 18-/-?
PLEASE HELP ME FRIENDS.....

Answers

Answered by kspaneserpcd1d9
1
In 600 liter acid=72 liter. Adding x litre of 30% acid means adding acid content of 0.3x. New num=72+0.3x. new den=600+x. So (72+0.3x)/(600+x)=0.15 gives x=120 liter. similarly for making it 18% we add 300 liter of 30% acid.
Answered by Anonymous
6

AnswEr:

Let x litres of 30% acid solution be added to 600 litres of 12% solution of acid. Then,

 \tt \: Total \: quantity \: of \: mixture = (600 + x) \: litres

Total acid content in the (600+x) litres of mixture -

 \rightarrow \tt \frac{30x}{100}  +  \frac{12}{100}  \times 600 \\

It is given that acid content in the resulting mixture must be more than 15% and less than 18%.

 \therefore \tt \: 15\% \: of \: (600 + x) < ( \frac{30x}{100}  +  \frac{12}{100} \times 600) \: 18\% \: of \: (600 + x) \\  \\  \rightarrow \tt \frac{15}{100} \times (600 + x) <  \frac{30x}{100}    +  \frac{12}{100}  \times 600 <  \\  \tt \frac{18}{100}  \times (600 + x) \\  \\ \rightarrow \tt15(600 + x) < 30x + 12 \times 600 < 18(600 + x) \\  \\ \rightarrow \tt9000 + 15x < 30x + 7200 < 10800 + 18x \\  \\ \rightarrow \tt9000 + 15x < 30x + 7200 \:  \: and \:  \:  \\  \tt \: 30x + 7200 < 10800 + 18x \\  \\ \rightarrow \tt \: 9000 - 7200 < 30x - 15x \:  \: and \:  \:  \\ \tt \: 30x - 18x < 10800 - 7200 \\  \\ \rightarrow \tt1800 < 15x \:  \:  \: and \:  \:  \: 12x <3 600 \\  \\ \rightarrow \tt15x > 1800 \:  \:  \: and \:  \:  \: 12x < 3600 \\  \\ \rightarrow \tt \: x > 120 \:  \:  \: and \:  \:  \: x < 300 \\  \\ \rightarrow \tt120 < x < 300

Hence, the number of litres of the 30% solution of acid must be more than 120 but less than 300.

Similar questions