Physics, asked by vatsalyabaranwal, 1 year ago

A non uniform thin rod of length l lies along the x axis with one end at the origin. It has linear mass density λ kg/m, given by  λ= λ0 (1+x/l). Find the centre of mass of the rod

Answers

Answered by kvnmurty
90
See diagram.

center of mass = \frac{1}{M}  \int\limits^L_0 {x} \, dm\\

Total Mass = M =
M = \int\limits^L_0 {} \, dm = \int\limits^L_0 {lambda\ } \, dx = lambda_0 \int\limits^L_0 {(1+\frac{x}{L})\ } \, dx \\ \\M= lambda_0\ [ x + \frac{x^2}{2L} ]_0^L = lambda_0\ [L + \frac{L^2}{2L}-0]\\ \\M=\frac{3\ lambda_0\ L}{2}\\

Center of mass =
= \frac{1}{M} \int\limits^L_0 {x} \, \ dm= \frac{1}{M} \int\limits^L_0 {x\ (density} \, \ dx)\\ \\= \frac{1}{M} * lambda_0 \int\limits^L_0 {x\ (1+\frac{x}{L})} \, \ dx \\ \\= \frac{1}{M} * lambda_0 * [\frac{x^2}{2} + \frac{x^3}{3L} ]_0^L \\ \\= \frac{1}{M} * lambda_0 * [\frac{L^2}{2} + \frac{L^3}{3L} - 0]\\ \\=\frac{1}{M} * lambda_0 * \frac{5}{6}L^2\\ \\=\frac{5\ lambda_0\ L^2}{6M}=\frac{5L^2}{6}*\frac{lambda_0}{M}\\

center of mass =
\frac{5L^2}{6}*\frac{2}{3L}=\frac{5L}{9}

Center of mass = (5 L / 9, 0)

Attachments:

kvnmurty: i hope that is clear enough
vatsalyabaranwal: yez sir.... thank you
vatsalyabaranwal: sorry sir i meant yes....
Answered by rtarunraj29
0

please mark me as brainliest

Attachments:
Similar questions