Physics, asked by lovelistedadnan416, 1 year ago

A particle having mass 2 kg is moving along straight line 3 x + 4 y equal 5 with speed 8 metre per second find angular momentum of the particle about origin x and y are in metre

Answers

Answered by mamathachinnam42593
1

Answer:

Explanation:

16 kg m2 /sec

Answered by talasilavijaya
0

Answer:

The angular momentum of the particle about origin is  16kg.m^{2} /s  

Explanation:

Given mass of the particle, m=2kg

direction of motion of particle is along a straight line, 3x+4y=5

speed of the particle, v=8m/s

Drop a perpendicular to origin from the line, 3x+4y-5=0

Therefore , the perpendicular distance of a line from a point is given by

                                 r=\Big | \frac{Ax^{'}+By^{'}+C  }{\sqrt{A^{2}+B^{2}  } } \Big|

For the line 3x+4y-5=0 from origin(0.0), the perpendicular distance is

                    r=\Big | \frac{3\times 0+4\times 0+(-5)  }{\sqrt{3^{2}+4^{2}  } } \Big|=\Big | \frac{(-5)  }{\sqrt{9+16 } } \Big|

                       =\Big | \frac{(-5)  }{\sqrt{25 } } \Big|=1

Angular momentum is given by L=mvr

                                                        =2\times 8\times 1=16kg.m^{2} /s

Hence the angular momentum of the particle is  16kg.m^{2} /s    

Similar questions