Physics, asked by ttanishata, 10 months ago


A particle is given an initial velocity of (i + 2ſ)ms, g = 10 ms?, the equation of trajectory is
ay = x - 5x2
b) y = 2x - 5x2 c) 4y = 2x - 5x?
d) 4y = 2x - 25x2

Answers

Answered by Sharad001
141

Question :-

A particle is given an initial velocity of \sf \hat{i} + 2 \hat{j} \:  \frac{m}{s}  \: ,g = 10  \frac{m}{s} ,the equation of trajectory is -

(A) y = x - 5 x²

(B) y = 2x - 5x²

(C) 4y = 2x - 5x²

(D) 4y = 2x - 25x²

Answer :-

\implies  \boxed{\sf \: y = 2x \:  - 5 {x}^{2} } \:

→ Option (B) is correct .

To find :-

→ Equation of trajectory

Explanation :-

Given that :-

 \to \sf initial \: velocity \: (u) =  (\sf \hat{i} + 2 \hat{j} )\:  \frac{m}{s}  \: \\  \\   \star \:  \sf \: vertical \: component \: of \: initial \: velocity \:i s \\ \:  \sf \:  \:  u_y = 2 \:  \frac{m}{s}  \:  \\  \\  \star \sf \:horizontal\:  component \: of \: initial \: velocity \:i s \\ \:  \sf \:  \:  u_x = 1 \:  \frac{m}{s}  \: \:

Hence,apply equation of motion for horizontal component ( x - axis )

 \implies  \boxed{\sf \: s = ut +  \frac{1}{2} a {t}^{2} } \\  \therefore \\  \\  \implies \sf \: x = u_x \: t  -  \frac{1}{2} a \:  {t}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \because \:  \:  a_x = 0 \:  \\  \\ \implies \sf x = u_x \: t \:  \:  \:  \:  \:  \:  \:  \:  \because  \: u_x = 1 \\  \\  \to \boxed{ \sf x = t}

Now, apply second equation of motion for vertical component -

 \to \sf y = u_y \: t  +  \frac{1}{2} a_y \:  {t}^{2}  \\  \\   \because \sf u_y= 2 \:  \: and \: a_y =  - g =  - 10 \\  \\  \to \sf y = 2t \:  -  \frac{1}{2}  \times 10 \times  {t}^{2}  \\  \\  \to \sf \: y = 2t \:  - 5 {t}^{2}  \\  \\  \because \sf  \: x = t \\  \\  \implies  \boxed{\sf \: y = 2x \:  - 5 {x}^{2} }

Similar questions