Physics, asked by Ibraheem9064, 10 months ago

A particle of mass m is lying on smooth horizontal table. A constant force F tangential to the surface is applied on it. Find . (a) average power over a time interval from t=0 to t=t, (b) instantaneous power as function of time t.

Answers

Answered by qwchair
0

Power = (F^2)(t)/(2m)

  • Given: Force (F) = F.

  • Acceleration = F/m

  • Velocity = Ft/m

        Displacement = \frac{Ft^{2}}{2m}

        Average Power = \frac{F^{2}t }{2m}

  • Instantaneous Power:
  • P\int\limits^ {} \, dt= F.\int\limits^ {} \, dx
  • P = (F^2)(t)/(2m)

Answered by VineetaGara
0

Here  Average power =F^{2}*t/m and Instantaneous Power  =F^{2}*t/m.

Given:

1.Mass of the particle = m (given)

2.Force (F) = F.

3.Acceleration = F/m    (Since F=m*a)

4.Velocity = Ft/m           (Since a= v/t)

5.Displacement = Ft^2/m         (Since v= displacement/t)

a) Now  Average Power = work done/t

                               = F*displacement/t

                              = F*F*t^2/t*m

                              =F^{2}*t/m

b) Instantaneous Power:

1. We know power = work done/t

                               = F*s/t

 

here for an instant s = ds and t= dt

i) So ds/dt = dv

2.Therefore instantaneous power = F*dv

                                                         =F*F*t/m

                                                       =F^{2}*t/m

Similar questions