Physics, asked by lussifer5148, 1 year ago

A particle projected from ground moves at angle 45º with horizontal one second after projection and speed is minimum two seconds after the projection. the angle of projection of particle is

Answers

Answered by SHIVAANSHSINGH
1

X=u cosθt   and Vx= u cosθY=u sinθt -12gt2and Vy=usinθ  -gtThe horizontal component of speed is Vx is always constant .So the speed is minimum when the vertical component Vy=0.So , we get , u sinθ=2g ....(1)Direction of velocity of the projecile at time t=1 sec = 45°Then , tan45°=1=VyVx=usinθ-gu cosθ⇒u cosθ=g ......(2)So dividing equation 1 and 2 we get,tan θ=2⇒θ=tan-12
Regards
Answered by Anonymous
2

X = u cos θ t  \\  V_{x} = u cos θ \\ </p><p>y = u sin θ t - \frac{g {t}^{2} }{2}  \\  V_{y}  = u sin θ - g t</p><p></p><p>

The horizontal component of speed {V_x} is always constant.

So , the speed is minimum when the vertical component {V_y}  is 0.

\longrightarrow u sinθ = 2 g 

45° = direction of velocity of the project at  time t = 1 sec.

 

tan  \: 45° = 1 =  \frac{ v_{x} }{ v_{y} }  \\ </p><p> u cosθ = g</p><p></p><p>  tan θ = 2     \\  \\   θ = tan⁻¹ 2

Similar questions