A pendulum of mass 80 milligram carrying a charge of 2 x 10-8 C is at rest in a horizontal
Uniform Electric field of 2 x 104 N/C. Find the tension in the thread of the pendulum and
the angle it makes With the vertical.
Answers
Answer:
shown below with an appropriate eg:-
Explanation:
Mass =80mg
Mass =80mgCharge =2×10−8 Coulomb
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kg
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8C
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibrium
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we get
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE⇒tanθ=80×10−6×102×10−8×2×104
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE⇒tanθ=80×10−6×102×10−8×2×104tanθ=0.5
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE⇒tanθ=80×10−6×102×10−8×2×104tanθ=0.5θ=tan−1(0.5)
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE⇒tanθ=80×10−6×102×10−8×2×104tanθ=0.5θ=tan−1(0.5)θ=270
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE⇒tanθ=80×10−6×102×10−8×2×104tanθ=0.5θ=tan−1(0.5)θ=270Now,
Mass =80mgCharge =2×10−8 CoulombElectric field =20,000Vm−1Given, mass =80mg=8×10−6kgcharge =q=2×10−8CLet T be the tension in string and θ is the angle if string with vertical.In equilibriumTsinθ=qE⟶(1)Tcosθ=mg⟶(2)Divide (1) by (2) we gettanθ=mgqE⇒tanθ=80×10−6×102×10−8×2×104tanθ=0.5θ=tan−1(0.5)θ=270Now,tension, T=sinθqE=sin2702×10−8×2×104=8.8×10