Math, asked by koustovroy6340, 1 year ago

a point A on x-axis,point B on y-axis and point P lies on line segment AB ,such that P(4,5) and AP:BP=5:3. find the coordinates of points A and B.

Answers

Answered by Abhishek63715
46
let coordinates of A = (a,0)
and coordinates of B = (0,b)
and coordinates of are = (4,5)

so, 4 = 3a+0/8
a = 32/3
5 = 5b+0/8
40/5 = b
b = 8 cm ans.
Answered by tardymanchester
40

Answer:

A=(\frac{32}{3},0)

B=(0,8)

Step-by-step explanation:

Given: A point A on x-axis,point B on y-axis and point P lies on line segment AB ,such that P(4,5) and AP:BP=5:3.

To find : The coordinates of points A and B.

Solution :  

Let point P(x_3,y_3)=(4,5) divides  the line segment joining the points A(x_1,y_1)=(a,0) and point B(x_2,y_2)=(0,b)  in ratio AP:BP=5:3

Then, Using section formula,

(x_3,y_3)=\frac{x_1n+x_2m}{m+n},\frac{y_1n+y_2m}{m+n}

(4,5)=(\frac{3a+0(5)}{5+3}),(\frac{0(3)+b(5)}{5+3})  

(4,5)=(\frac{3a}{8}),(\frac{5b}{8})  

Equating x-coordinate,

4=\frac{3a}{8}  

4\times 8=3a  

32=3a  

a=\frac{32}{3}  

Equating y-coordinate,

5=\frac{5b}{8}  

5\times 8=5b  

40=5b  

a=\frac{40}{5}  

a=8  

Therefore, Point A and B are

A=(a,0)=(\frac{32}{3},0)

B=(0,b)=(0,8)

Similar questions