Physics, asked by nora4763, 5 months ago

A prism of refractive index n and angle A is placed in minimum deviation position. If the angle of minimum deviation is equal to the angle A then the value of A is

Attachments:

Answers

Answered by nirman95
2

Given:

A prism of refractive index n and angle A is placed in minimum deviation position. The angle of minimum deviation is equal to the angle A.

To find:

Value of A ?

Calculation:

Expression for minimum deviation:

 \therefore \:  \mu =  \dfrac{ \sin( \frac{A +  \delta}{2} ) }{ \sin( \frac{A}{2} ) }

Since A = \delta:

 \implies \:  \mu =  \dfrac{ \sin( \frac{A + A }{2} ) }{ \sin( \frac{A}{2} ) }

 \implies \:  \mu =  \dfrac{ \sin( \frac{2A}{2} ) }{ \sin( \frac{A}{2} ) }

 \implies \:  \mu =  \dfrac{ \sin(A)  }{ \sin( \frac{A}{2} ) }

 \implies \:  \mu =  \dfrac{ 2\sin( \frac{A}{2} ) \cos( \frac{A}{2} )   }{ \sin( \frac{A}{2} ) }

 \implies \:  \mu =  2 \cos( \frac{A}{2} )

 \implies \:  \cos( \frac{A}{2} )    =  \dfrac{ \mu}{2}

 \implies \:  \sqrt{1 -  { \sin}^{2} ( \frac{A}{2}) }     =  \dfrac{ \mu}{2}

 \implies \:  1 -  { \sin}^{2} ( \frac{A}{2})      =  \dfrac{  { \mu}^{2} }{4}

 \implies \:    { \sin}^{2} ( \frac{A}{2})      =  1 - \dfrac{  { \mu}^{2} }{4}

 \implies \:    { \sin}^{2} ( \frac{A}{2})      =   \dfrac{ 4 -  { \mu}^{2} }{4}

 \implies \:    \sin( \frac{A}{2})      = \sqrt{ \dfrac{ 4 -  { \mu}^{2} }{4} }

 \implies \:    \dfrac{A}{2}      = { \sin}^{ - 1}  \bigg \{ \sqrt{ \dfrac{ 4 -  { \mu}^{2} }{4} } \bigg \}

 \implies \:    A     = 2{ \sin}^{ - 1}  \bigg \{ \sqrt{ \dfrac{ 4 -  { \mu}^{2} }{4} } \bigg \}

Since \mu= n in this question:

 \implies \:    A     = 2{ \sin}^{ - 1}  \bigg \{ \sqrt{ \dfrac{ 4 -  {n}^{2} }{4} } \bigg \}

So, final answer is:

 \boxed{ \bf \:    A     = 2{ \sin}^{ - 1}  \bigg \{ \sqrt{ \dfrac{ 4 -  {n}^{2} }{4} } \bigg \}}

Similar questions