Physics, asked by afiyaparveen908, 10 months ago

A projectile is fired with a velocity u making an angle theta with the horizontal. Derive an expression for a) maximum height b) time of flight c) horizontal range d)maximum horizontal range

Answers

Answered by Anonymous
100

\huge  {\red{\boxed{ \overline{ \underline{ \mid\mathfrak{An}{\mathrm{sw}{ \sf{er}}   \colon\mid}}}}}}

Maximum Height

It is the maximum vertical height attained by object.

Take Motion from A to H

Take,

  • uy = usinθ
  • ay = -g
  • y0 = 0
  • y = h
  • t = T/2 = usinθ/g

Use formula :

 {\boxed{ \sf{y \:  =  \: y_{0}  \:  +  \: u_{y} t \:  +  \:  \dfrac{1}{2} a_y {t}^{2} }}} \\  \\  \implies \sf{h \:  =  \: 0 \:  +  \: u \sin \theta \times  \dfrac{ u \sin \theta}{g} \:  +  \:  \frac{1}{2} ( - g) \bigg( \frac{u \sin \theta}{g} } \bigg)^{2}  \\  \\  \implies \sf{h \:  =  \:  \frac{ {u}^{2}}{g} \sin^{2}  \theta \:   -  \:  \frac{1}{2} \frac{ {u}^{2}  \sin^{2} \theta }{g}   } \\  \\  \implies \sf{h \:  =  \:  \frac{ {u}^{2}  { \sin}^{2} \theta }{2g} }

__________________________________

Time of Flight :

It is the total time

Motion from A to H and H to B

  • uy = usinθ
  • ay = -g
  • t = T/2
  • vy = 0

Time of flight = Time of Ascent + Descent Time

T = t + t

» t = T/2

Now use :

{\boxed{\sf{v_y \: = \: u_y \: + \: a_yt}}} \\ \\ \implies {\sf{0 \: = \: u \sin \theta \: + \: (-g) \dfrac{T}{2}}} \\ \\ \implies {\sf{T \: = \: \dfrac{2u \sin \theta}{g}}}

__________________________________

Horizontal Range :

It is the horizontal distance covered by an object.

  • u = ucosθ
  • t = T
  • a = g = 0
  • s = R

\boxed{\sf{s \: = \: ut \: + \: \dfrac{1}{2}gt^2}} \\ \\ \implies {\sf{R \: = \: u \cos \theta T \: + \: 0}} \\ \\ \implies {\sf{R \: = \: u \cos \theta T}} \\ \\ \implies {\sf{R \: = \: u \cos \theta \:  \times \: \dfrac{2u \sin \theta}{g}}} \\ \\ \implies {\sf{R \: = \: \dfrac{u^2}{g}2 \sin \theta \cos \theta }} \\ \\ \implies {\sf{R \: = \: \dfrac{u^2 \sin 2 \theta}{g}}}

_________________________________

Maximum Horizontal Range :

Take θ = 45°

\implies {\sf{R \: = \: \dfrac{u^2}{g} \sin 2 \: \times \: 45}} \\ \\ \implies {\sf{R_{max} \: = \: \dfrac{u^2}{g}}}

Attachments:
Answered by Anonymous
165

\huge{\sf{Projectile }}

A parabolic projectilon making a maximum angle of 45° with respect to the horizontal frame

\boxed{\setlength{\unitlength}{1 cm}\thicklines\begin{picture}(6.65,3.2) \put(0.3,1){\line(1,0){6}} \qbezier(0.3,1)(3,3)(6.3,1)\put(0.3,1){\vector(1,1){1}} \qbezier(0.5,1.2)(0.65,1,1)(0.6,1)\put(0.77,1.065){$\theta$}\put(0.5,1.8){u}\put(3.15,1.5){\vector(0,1){0.5}}\put(3.15,1.5){\vector(0,-1){0.5}}\put(3.3,1.4){H}\put(4.3,0.7){\vector(-1,0){4}}\put(4.3,0.7){\vector(1,0){2}}\put(3.3,0.3){R}\end{picture}}

The initial velocity of the projectile is u and angle with the x - axis is ∅

  • Velocity of a projectlie along X axis is u cos∅

  • Velocity along Y - axis is u sin∅

Maximum Height

  • The final velocity vector along y axis tends to zero

  1. Maximum distance covered along y axis

From,

 \sf \:   { {v}^{2} }_{y}    -  { {u}^{2} }_{y}  = 2( - g)h \\  \\  \longrightarrow \:  \sf{ - u {}^{2}  \sin( \theta) {}^{2}  =  - 2gh} \\  \\   \longrightarrow \:  \sf \: 2h =    \frac{ {u}^{2} \sin {}^{2} ( \theta)  }{g}  \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf{h =   \dfrac{ {u}^{2} {sin}^{2} \theta  }{g} }}}

Time of Flight

  • Total time interval which involves the time of ascent and time of descent of a projectile

\sf T_f = t_a + t_d

Consider s = ut + 1/2at²

Since,

The projectile starts from the ground and returns to the ground,the vertical displacement is zero » s = 0 m

 \sf{0 = uT +  \dfrac{1}{2}( - g) {T}^{2}  } \\  \\  \longrightarrow \:  \sf \: uT =  \dfrac{1}{2} g {T}^{2}  \\  \\  \longrightarrow \:  \sf \: 2u \sin( \theta)  = gT \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf{T =  \dfrac{2u \sin( \theta) }{g}}}}

Time of ascent and Time of Descent would be u sin∅/g

Range

  • Horizontal displacement of a projectlie (along X axis )

 \sf{speed =  \dfrac{distance}{time} } \\  \\  \longmapsto \:  \sf{u \cos( \theta)  \times  \dfrac{2u \: \sin( \theta) }{g}  = R} \\  \\  \longmapsto \:  \sf \: R =  \dfrac{ {u}^{2} }{g}  \times 2 \sin( \theta) \cos( \theta)   \\  \\  \longmapsto \:  \boxed{ \boxed{ \sf{R =  \dfrac{ {u}^{2}  \sin(2 \theta) }{g} }}}

For maximum range,∅ = 45°

 \longmapsto \:  \boxed{ \boxed{ \sf { R =  \dfrac{ {u}^{2} }{g} }}}

Similar questions