Physics, asked by irfankhan92, 6 months ago

A projectile is thrown with a velocity of 10 ms⁻¹ at an angle of 30° with horizontal. The value of maximum height gained by it is *
(a) 1 m
(b) 1.25 m
(c) 2 m
(d) 2.5 m​

Answers

Answered by Λყυѕн
78

Given:

\sf{Initial \:Velocity=10m}{s^-1}

Angle of Projection=30°

To Find:

\sf{Maximum \:Height \:Gained \:by \:the \:Object.}

Solution:

\sf{Maximum \:Height=}{\dfrac{{u^2}{sin^2\theta}}{2g}}

\sf{Maximum \:Height=}{\dfrac{100\times0.25}{19.6}}

\sf{Maximum \:Height=}{\dfrac{25}{19.6}}

\sf{Maximum \:Height=1.275m}

\sf\underline{Thus, \:maximum \:height \:attained \:by \:the \:body \:is \:1.275m}

Answered by itsRainbowstar
14

Answer:

Given:

Initial velocity (u) = 10m/s.

Angle of projection = 30°.

To Find:

Maximum height of projectile.

Solution:

We know that,

\star \: \boxed{\rm\red{Height \: of \: projectile  =  \frac{ {u}^{2}  {sin \theta}^{2} }{2g}}}

Substituting values,

:\implies\mathtt{  \frac{( {10)}^{2} \times ( {sin30)}^{2}  }{2 \times 9.8} }

:\implies\mathtt{ \frac{100 \times 0.5 \times 0.5}{19.6} }

:\implies\mathtt{ \frac{100 \times 0.25}{19.6} }

:\implies\mathtt{\dfrac{\cancel{25}}{\cancel{19.6}}}

\sf\star \: \underbrace\green{Height \: of \: projectile  \: =  \: 1.275m} \: \star

Hence,

Value of maximum height gained is 1.275m.

✌︎ʜᴏᴘᴇ ᴛʜɪs ᴡɪʟʟ ʜᴇʟᴘ ʏᴏᴜ ✌︎

Similar questions