Math, asked by dhamapuru7446, 1 year ago

A quadratic polynomial whose zeroes are 3/5 and -1/2 is

Answers

Answered by ihrishi
2

Step-by-step explanation:

let \:  \alpha  \: and \:  \beta  \: be \: the \: zeros \: of \: required \: \\  quadratic \: polynomial. \: therefore \\ sum \: of \: zeros \\  \alpha  +  \beta  =  \frac{3}{5}  + ( -  \frac{1}{2} )  \\ =  \frac{6 - 5}{10}  \\  =  \frac{1}{10}  \\ product \: of \: zeros \\  \alpha  \beta  =  \frac{3}{5} ( -  \frac{1}{2} ) =  -  \frac{3}{10}  \\ let \: the \: required \: polynomial \: be \:  \\ p(x) =  {x}^{2}  - ( \alpha  +  \beta ) +  \alpha  \beta  \\  =  {x}^{2}  +  \frac{1}{10} x + ( -  \frac{3}{10} ) \\  = 10 {x}^{2}  + x - 3

Answered by Mbappe007
0

Answer:

letαandβbethezerosofrequired

quadraticpolynomial.therefore

sumofzeros

α+β=

5

3

+(−

2

1

)

=

10

6−5

=

10

1

productofzeros

αβ=

5

3

(−

2

1

)=−

10

3

lettherequiredpolynomialbe

p(x)=x

2

−(α+β)+αβ

=x

2

+

10

1

x+(−

10

3

)

=10x

2

+x−3

Similar questions