Math, asked by aryasingh7356, 7 months ago

a quadratic polynomial whose zeroes are -4 and -5 thrn the polynomial​

Answers

Answered by mathdude500
2

Answer:

here

 \alpha  =  - 4 \: and \:  \beta  =  - 5 \\ sum \: of \: zeroes \: s \:  =  \alpha  +  \beta  =  - 4 - 5 =  - 9 \\ product \: \: of \: zeroes \: p \:  =  \alpha  \beta  = ( - 4)( -5 ) = 20 \\ so \: required \: equation \: of \: polynomial \: is \\ f(x) = k( {x}^{2}  - sx + p) \\ f(x) = k( {x}^{2}  + 9x + 20) \: where \: k \: is \: non \: zero \: real \: number

Answered by Anonymous
0

Answer:

x^2 - 9x + 20

Step-by-step explanation:

Formula for calculating Quadratic polynomial:-

     

                              x^2 + (Sum of zero's)x + (product of zero's)

Hence,                    x^2 + (-4 +(-5))x + (-4*-5)

                    Therefore,     x^2 - 9x + 20.

Now u got it. Boom!!!!        

Similar questions