Math, asked by snigdhamondal76, 2 months ago

A rhombus-shaped sheet with perimeter 40cm and one diagonal 12 cm, is painted on

both sides at the rate of Rs. 5 per m2

. Find the cost of painting.​

Answers

Answered by Yugant1913
25

 \bigstar \underline{ \:  \underline{ \large \red{ \frak{Proper  \: question}}}}

A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm, is painted on both sides at the rate of Rs 5 per m². Find the cost of painting.

Given,

  • Perimeter = 40cm

  • One diagonal = 12cm

  • Painted price = Rs.5 per m²

To find,

  • Find the cost of painting

 \bigstar \underline{ \frak{Solution}}

In a rhombus, all sides are equal.

 \sf \: Perimeter  \: of  \: rhombus = 40 cm  \\  \sf \: Side  \: of \:  rhombus =  \frac{ \cancel{40}}{ \cancel{10}}  = 10 cm

a = 10, b = 10, c = 12

 \qquad \frak{\red {\:  \boxed { \frak S =  \frac{(a + b + c)}{2} }}}

 \sf \: ⇒ s = \frac{ (10 + 10 + 12)}{2} \\  \sf S = \frac{ \cancel{32}}{ \cancel2} \\  \frak{ \red{  S= 16}. }

  \sf \: Area \: (ΔBCD) =  \sqrt{s(s-a)(s-b)(s-c)}

 \sf \: ⇒ Area(ΔBCD) =  \sqrt{16(16-10)(16-10)(16-12) }

 \sf \: ⇒ Area(ΔBCD) =  \sqrt{16×6×6×4 }

 \sf \: ⇒ Area(ΔBCD) = 48 cm {}^{2}

 \sf \: As  \: ABCD  \: is  \: a \:  rhombus, \:  Area(ΔBCD) = Area(ΔABD)

 \red {{ \boxed{\frak{⇒ Area  \: of \:  rhombus \: ( \sf{ABCD}) =  \frak{Area} \: ( \sf{ \sf{ΔBCD }}) + \frak{ Area}}(ΔABD)}}}

 \sf \:  ⇒ Area \:  of \:  rhombus(ABCD) = 48 + 48

 \sf \: \boxed{ \frak{ ⇒ Area  \: of \:  rhombus(ABCD) = 96cm2}}

Now,

Cost of painting 1 m² = 5 per m²

Cost of painting 96m² = 96 × 5 = 480

Hence, the cost of painting rhombus - shaped sheet be Rs. 480

Answered by Aeryxz
169

\sf{In  \: a \:  rhombus \: , all \:   \: sides \:  are  \: equal.}

\sf{Perimeter \:  of \:  rhombus = 40 cm}

\sf{Side  \: of \:  rhombus}

\sf =    \frac{40}{4}

\sf{= 10 cm}

\sf{a = 10, b = 10, c = 12}

So,

\sf ⟹   \frac{a + b + c}{2}

\sf⟹  \frac{10 + 10 + 12}{2}

\sf⟹  \frac{32}{2}

\sf⟹ 16

\sf{Area :-}

\sf⟹ \sqrt{s(s - a)(s - b)(s - c)}

\sf⟹ area \: (Δabcd) =  \sqrt{16(16 - 10)(16 - 10)(16 - 12)}

\sf⟹area (Δabcd) =  \sqrt{16 \times 6 \times 6 \times 4}

\sf⟹ area (Δabcd) =  {48cm}^{2}

\sf{As \:  ABCD \:  is  \: an \:  Rhombus \: , Area \:  (ΔBCD)  = (ΔABD)}

\sf{Area  \: of  \: Rhombus (ABCD) = Area (ΔBCD) + Area (ΔABD)}

\sf{Area  \:  of  \: Rhombus  \: ABCD = 48 + 48 }

\sf{Area  \: of \:  Rhombus \:  ABCD = \:  {96cm}^{2}}

\sf⟹ Hence  \: the \:  Answer  \: is \:  {96cm}^{2}

So,

Cost of painting 1 m² = 5 per m²

Cost of painting 1 m² = 5 per m²Cost of painting 96m²

96 × 5

480

Hence, the cost of painting rhombus - shaped sheet be Rs. 480.

Similar questions