Math, asked by smohanty123, 1 year ago

A semicircular sheet of diameter 28 cm is bent into an open conical cup . Find the depth and capacity of this cup

Answers

Answered by vaishnavi3237
4

circumference of circular part=28

2×22/7×r=28

r=28×7/44

r=49/11 cm.

semicircular sheet when fold then it's radius become height of cone.

so, height of cone=14cm (d=28cm)

now capacity =volume of cone=1/3×22/7×49/11×14

=196/3cm cubic

=68.7cm cubic.

Answered by vineeta26
5

Answer:

depth = 12 cm (approx.)

volume = 616 cm³

Step-by-step explanation:

diameter= 28 cm

radius of sphere = 14 cm = slant height of cone

curved part of the sheet = circumference of the base of cone

curved part of sheet = (2π r)/2

                                  = π r

                                  = 22/7 *14

                                  = 44  cm

circumference of base of cone = 2 π r

                                      ⇒  44       = 2*22/7*r

                                       ⇒ 7 cm    = r

height of cone = √l²-r²

                         ⇒√(14)²-(7)²

                          ⇒√196-49

                           ⇒√146⇒12 cm(approx.)

∴depth = 12 cm (approx.)

∴ volume = 1/3πr²h

                ⇒1/3×22/7×7×7×12

                 ⇒22×7×4⇒616 cm³

Similar questions