Physics, asked by PhysicsHelper, 1 year ago

A simple pendulum consists of a 50 cm long string connected to a 100 g ball. The ball is pulled aside so that the string makes an angle of 37° with the vertical and is then released. Find the tension in the string when the bob is at its lowest position.

Answers

Answered by tiwaavi
28
given in the question,
Length of the string = 50 cm =0.5 m

Refer to the attachment
cosθ = xz /xy
xz = xycosθ
xz = (0.5 × cos37°)
xz = ( 0.5 × 0.8)
xz = 0.4
Now,
zn = 0.5-0.4
zn = 0.1 m

Energy on the n point = energy on the y point
1/2 mv^2 = mg(zn) 
v² = 20 × 0.1
v² = 2


Now tension 
T =  \frac{mv^2}{r} +mg  
T = 0.1 [(2/0.5)  +10)]
T = 1.4 N.


Hope it Helps . :-)


Attachments:
Answered by bhuvna789456
5

The tension in the string when the bob is at its lowest position is 1.4 N.

Explanation:

Given data  in the question,

String’s length  = 50 cm        

Converting centimeter to meter

String’s length  =\frac{50}{100}=0.5 \mathrm{m}

                \cos \theta=\frac{x z}{x y}

                    xz = xycosθ

                    xz = (0.5 × cos37°)

                    xz = ( 0.5 × 0.8)

                    xz = 0.4

Now,

         z_n = 0.5-0.4

         z_n = 0.1 m

Energy in point n = energy  in the point y  

                    \frac{1}{2} m v^{2}=m g(z n)

                         v^{2}=20 \times 0.1

                         v^{2}=2

Now tension,

                    \mathrm{T}=\frac{m v^{2}}{r}+m g

                    \left.\mathrm{T}=0.1\left[\left(\frac{2}{0.5}\right)+10\right)\right]

                    \mathrm{T}=0.1[(4+10)]

                    T = 0.4 + 1

                    T = 1.4 N.

Therefore, the tension is 1.4 N.

Attachments:
Similar questions