A solid cylinder has total surface area of 462 sq cm.Its curved area is one third of its total surface area.Find the volume of the cylinder...
Answers
Answered by
1850
TOTAL SURFACE AREA OF THE CYLINDER(TSA)=462CM²
CURVED SURFACE=1/3 OF TSA
=1/3 X 462
=154CM²
AREA OF EACH CIRCLE=(462-154)/2
=154CM²
PI*R²=154
R²=49
R=7
2PI*R*H=154
H=154*7/22*7
H=3.5
VOLUME=PI*R²*H=22/7*49*35/10
VOLUME=539CM³
CURVED SURFACE=1/3 OF TSA
=1/3 X 462
=154CM²
AREA OF EACH CIRCLE=(462-154)/2
=154CM²
PI*R²=154
R²=49
R=7
2PI*R*H=154
H=154*7/22*7
H=3.5
VOLUME=PI*R²*H=22/7*49*35/10
VOLUME=539CM³
Answered by
918
We have Total Surface Area of cylinder
= 2πr( h + r ) or 2πrh + 2πr²
2πrh + 2πr² = 462 cm² _(i)
Where,
Curved Surface Area = ⅓ Total Surface Area
2πrh = ⅓ × 462 cm²
2πrh = 154 cm²
Substituting value of 2πrh in eq (i),
154 cm² + 2πr² = 462 cm²
2πr² = 462 - 154 cm² = 308 cm²
r² = 308/2π
r² = 308 × 1/2 × 7/22 cm²
r² = 28 × 1/2 × 7/2 cm²
r = √49 cm² = 7 cm
Substituting value of r in 2πrh
2πrh = 154 cm²
h = 154/2πr
h = 154 × 1/2 × 7/22 × 1/7 cm
h = 7/2 cm
Volume of cylinder = πr²h
= 22/7 × 7² × 7/2 cm³
= 539 cm³
= 2πr( h + r ) or 2πrh + 2πr²
2πrh + 2πr² = 462 cm² _(i)
Where,
Curved Surface Area = ⅓ Total Surface Area
2πrh = ⅓ × 462 cm²
2πrh = 154 cm²
Substituting value of 2πrh in eq (i),
154 cm² + 2πr² = 462 cm²
2πr² = 462 - 154 cm² = 308 cm²
r² = 308/2π
r² = 308 × 1/2 × 7/22 cm²
r² = 28 × 1/2 × 7/2 cm²
r = √49 cm² = 7 cm
Substituting value of r in 2πrh
2πrh = 154 cm²
h = 154/2πr
h = 154 × 1/2 × 7/22 × 1/7 cm
h = 7/2 cm
Volume of cylinder = πr²h
= 22/7 × 7² × 7/2 cm³
= 539 cm³
Similar questions
Math,
8 months ago
India Languages,
8 months ago
Math,
8 months ago
Math,
1 year ago
History,
1 year ago