Math, asked by harmeenchohan01, 1 year ago

a spherical iron shell with 8cm external diameter wieghs 1860 4/7g.find the thickness of the shell of the density of metal 12g/cubic cm.

Answers

Answered by soundrarajanksr27
7
I think this will be helpful to you
Attachments:
Answered by mysticd
21

 Given \: external \: diameter \: of \: a \\spherical \: iron \: shell (d) = 8 \:cm

 Let \: external \: radius (R) = \frac{d}{2} \\= \frac{8}{2} \\= 4 \:cm

 Let \: internal \: radius \: of \: the \:shell = r\:cm

 i) Volume \: of \:the \:shell (V) \\= Volume_{(external ) }- Volume_{(internal)} \\= \frac{4}{3} \pi R^{3} - \frac{4}{3} \pi r^{3}\\= \frac{4}{3}\pi  (R^{3} - r^{3} ) \\= \frac{4}{3} \pi (4^{3} - r^{3} )\: --(1)

 Weight \: of \: the \:shell (W)\\ = 1860\frac{4}{7} \:g\\= \frac{13024}{7} \:g

 Density \: of \:the \:shell (D) = 12 \:g/cm^{3}

 \boxed { \pink { Volume = \frac{Weight}{Density }}}

 \implies \frac{4}{3} \pi(4^{3} - r^{3} ) = \frac{\frac{13020}{7}}{12}

 \implies 64 - r^{3} = \frac{13024}{7\times 12}\times \frac{3}{4}\times \frac{7}{22}

 \implies 64 - r^{3} = 37

 \implies 64 -  37 = r^{3}

 \implies  27 = r^{3}

 \implies   r^{3} = 3^{3}

 \implies  r = 3 \: cm

 \implies Thickness \: of \: the \:shell = R - r \\= 4 \:cm - 3 \:cm \\= 1 \: cm

Therefore.,

 \red {Thickness \: of \: the \:shell} \green {= 1 \: cm}

•••♪

Similar questions