Math, asked by Akshaja6359, 11 months ago

A statue 1.6 m tall stands on the top of pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Answers

Answered by techtro
20

The height of the pedestal is :

Given : Height of the statue, RS = 1.6 m, angle of elevation of top of the statue = 60°, angle of elevation of top of the pedestal = 45°

• Let suppose point is at a distance x m from foot of the pedestal and height of pedestal be h m.

• In ∆PQR,

tan 45° = h / x

1 = h / x

h = x

• In ∆PQS,

tan 60° = 1.6 + h / x

√3x = 1.6 + h

√3h = 1.6 + h

h(√3 - 1) = 1.6

• h = 1.6 / (√3-1)

= 1.6(√3-1) / 2 = 0.8(√3-1) m

Attachments:
Answered by Anonymous
13

\large\sf\red{In\:∆BCD,}

\large\sf\red{tan\:45°=\frac{BC}{DC}}

\large\sf\red{1=\frac{h}{DC}}

\therefore\large\sf\red{DC=h}

⠀⠀

\large\sf\purple{In\:∆ACD,}

\large\sf\purple{\angle{ADC}=60°}

\large\sf\purple{tan\:60°=\frac{AC}{DC}}

\large\sf\purple{√3=\frac{1.6+h}{h}}

\large\sf\purple{√3h=1.6+h}

\large\sf\purple{√3h-h=1.6}

\large\sf\purple{h(√3-1)=1.6}

\large\sf\purple{h=\frac{1.6}{√3-1}}

\large\sf\purple{h=\frac{1.6}{√3-1}×\frac{√3+1}{√3+1}}

\large\sf\purple{h=\frac{1.6(√3+1)}{2}}

\large\sf\purple{h=0.8(√3+1)m}

Attachments:
Similar questions