Math, asked by rashmi65, 1 year ago

a sum of money, invested at compound interest amounts to ₹19360 in 2 years and to ₹23,425.60 in 4 years. Find the rate per cent and the original sum of money

Answers

Answered by Karanraj123
21
Now you can see the answer
Attachments:

Karanraj123: like my answer
rashmi65: yess
Answered by tiwaavi
34
Hello Dear.

Here is your answer---


→→→→→→→→→→

Le the Sum of Money be Rs. x.
Let the rate of Interest be r%.

In First Case,
 
Principal(P) = Rs. x
Amount = Rs. 19360
Rate% =r%
Time(n) = 2 years.

Using the Formula,

     Amount = P[ 1 + r%/100]ⁿ
     19360 = x[1 + r%/100]²
     19360/x = [1 + r%/100]² ------------------------eq(i)

In Second Case,

 Principal(P) = Rs. x
  Rate% = r%
 Time(n) = 4 years.
Amount = Rs. 23425.60

Again Using the Formula,
 
         Amount = P[1 + r%/100]ⁿ
        23425.60 = x[1 + r%/100]⁴

From eq(i),

                 23425.60 = x[1 + r%/100]² × [19360/x]
     \frac{23425.60}{19360}  = [1 + r%/100]²
           ⇒   \frac{121}{100}  = [1 + r%/100]²
                     ⇒    (11/10)² = [1 + r%/100]²

  On Comparing,
                      \frac{11}{10} =  1 + \frac{r}{100}    
                       \frac{11}{10} -1 =  \frac{r}{100}      
                      \frac{11 -10}{10} =  \frac{r}{100}
                         \frac{1}{10} = \frac{r}{100}
                           ⇒  r = 10%

Thus, the rate % will be 10%.


For the Principal,

  Using eq(i),
    19360/x  =  [1 +r%/100]²
     19360/x = [1 + 10/100]²
    19360/x = (11/10)²
     \frac{19360}{x} = \frac{121}{100}
       x = 160 × 100
  ⇒  x = Rs. 16,000

Thus, the Principal or the original sum of money is Rs 16,000.


→→→→→→→→→→



Hope it helps.

Have a Marvelous Day.
Similar questions