Physics, asked by aayush007in, 10 months ago

A tank is filled with water and two holes A and B are made in it. For getting same range , ratio of h/h' is??

see the attachment​

Attachments:

Answers

Answered by EdChuran
4

Range(A)=2hg×2g(x+h′ ) Range(B)=2(h+x) g×2gh′ h(x+h′ )=h′ (x+h)hx+hh′ =hh′ +h′ x h=h′  hh′ =1Range\left( A \right) =\sqrt { \cfrac { 2h }{ g } \times 2g\left( x+{ h }^{ \prime  } \right)  } \\ Range\left( B \right) =\sqrt { \cfrac { 2\left( h+x \right)  }{ g } \times 2g{ h }^{ \prime  } } \\ h\left( x+{ h }^{ \prime  } \right) ={ h }^{ \prime  }\left( x+h \right) \\ hx+h{ h }^{ \prime  }=h{ h }^{ \prime  }+{ h }^{ \prime  }x\\  \quad \quad \quad h={ h }^{ \prime  }\\ \quad  \quad \cfrac { h }{ { h }^{ \prime  } } =1Range(A)=g2h​×2g(x+h′ ) (all in root)

Range(B)=g2(h+x) ​×2gh′ (all in root)

h(x+h′ )=h′ (x+h)hx+hh′ =hh′ +h′ x h=h′  h′ h​=1(all in root)

Answered by nuuk
15

Answer:

Explanation:

for height h'

velocity at hole is v'=\sqrt{2gh'}

time taken to reach ground is

t'=\sqrt{\frac{2(x+h)}{g}}

where x is the distance between h and h'

Range for h'=v't'=\sqrt{2gh'}\times \sqrt{\frac{2(x+h)}{g}}

For height h

exit velocity is

v=\sqrt{2gh}

time taken to cover h height

t=\sqrt{\frac{2h}{g}}

Range for h=v\times t

Range=\sqrt{2gh}\times \sqrt{\frac{2h}{g}}

Range for both the height is same therefore

\sqrt{2gh'}\times \sqrt{\frac{2(x+h)}{g}}=\sqrt{2gh}\times \sqrt{\frac{2h}{g}}

h'(h+x)=(h'+x)h

h'x+hh'=hh'+hx

x(h-h')=0

thus h=h'

ratio of \frac{h}{h'}=1

Similar questions